NumeratorDenominator
✖
NumeratorDenominator
Details and Options

- Numerator picks out terms that do not have superficially negative exponents. Denominator picks out the remaining terms.
- An exponent is "superficially negative" if it has a negative number as a factor.
- The standard representation of rational expressions as products of powers means that you cannot simply use Part to extract numerators.
- NumeratorDenominator can be used on rational numbers.
- NumeratorDenominator automatically threads over lists.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Extract the numerator and denominator of a rational number:

https://wolfram.com/xid/0mlfmdeubbtq-i9875r

Extract the numerator and denominator of a rational expression:

https://wolfram.com/xid/0mlfmdeubbtq-fp31w

Extract the numerator and denominator of a symbolic expression:

https://wolfram.com/xid/0mlfmdeubbtq-xu5bwl

Scope (7)Survey of the scope of standard use cases

https://wolfram.com/xid/0mlfmdeubbtq-9bhlk3


https://wolfram.com/xid/0mlfmdeubbtq-jf4nld


https://wolfram.com/xid/0mlfmdeubbtq-qieutj

Select terms with syntactically positive and negative exponents:

https://wolfram.com/xid/0mlfmdeubbtq-dxef23


https://wolfram.com/xid/0mlfmdeubbtq-esqxkf

Reconstruct the original expression:

https://wolfram.com/xid/0mlfmdeubbtq-8dpag7

NumeratorDenominator automatically threads over lists:

https://wolfram.com/xid/0mlfmdeubbtq-tm4

Compute the numerator and denominator over the integers modulo 5:

https://wolfram.com/xid/0mlfmdeubbtq-9n7tba

Compute the numerator and denominator while incorporating common trigonometric identities:

https://wolfram.com/xid/0mlfmdeubbtq-t43vxw

Options (2)Common values & functionality for each option
Applications (2)Sample problems that can be solved with this function
Compute the numerator and denominator with respect to a specified modulus:

https://wolfram.com/xid/0mlfmdeubbtq-9fk5ir

Compute the limit at infinity of a rational function:

https://wolfram.com/xid/0mlfmdeubbtq-q9u57j

Extract the numerator and denominator:

https://wolfram.com/xid/0mlfmdeubbtq-400s8p

Apply Exponent to find the degree of the numerator and denominator:

https://wolfram.com/xid/0mlfmdeubbtq-euku12

We can see that the denominator has a larger degree. Thus, the function approaches zero as grows large:

https://wolfram.com/xid/0mlfmdeubbtq-yarit3

This can be confirmed using Limit:

https://wolfram.com/xid/0mlfmdeubbtq-dp46bm

Properties & Relations (1)Properties of the function, and connections to other functions
Wolfram Research (2019), NumeratorDenominator, Wolfram Language function, https://reference.wolfram.com/language/ref/NumeratorDenominator.html.
Text
Wolfram Research (2019), NumeratorDenominator, Wolfram Language function, https://reference.wolfram.com/language/ref/NumeratorDenominator.html.
Wolfram Research (2019), NumeratorDenominator, Wolfram Language function, https://reference.wolfram.com/language/ref/NumeratorDenominator.html.
CMS
Wolfram Language. 2019. "NumeratorDenominator." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/NumeratorDenominator.html.
Wolfram Language. 2019. "NumeratorDenominator." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/NumeratorDenominator.html.
APA
Wolfram Language. (2019). NumeratorDenominator. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NumeratorDenominator.html
Wolfram Language. (2019). NumeratorDenominator. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/NumeratorDenominator.html
BibTeX
@misc{reference.wolfram_2025_numeratordenominator, author="Wolfram Research", title="{NumeratorDenominator}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/NumeratorDenominator.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_numeratordenominator, organization={Wolfram Research}, title={NumeratorDenominator}, year={2019}, url={https://reference.wolfram.com/language/ref/NumeratorDenominator.html}, note=[Accessed: 29-March-2025
]}