PIDDerivativeFilter
✖
PIDDerivativeFilter
Details

- The derivative filter replaces the direct derivative
with its filtered version
, effectively series connecting a lowpass filter with the derivative.
- The derivative filter
is a first-order system with a pole at
. A large
value means a fast filter and less filtering effect.
- Possible settings include:
-
None , no filtering
n explicitly specified filter
Examples
Basic Examples (1)Summary of the most common use cases
Specify a derivative filter parameter for a PD controller and extract the controller transfer function:
In[1]:=1

✖
https://wolfram.com/xid/0b7e9ckw00yq6fje-dcsuek
In[2]:=2

✖
https://wolfram.com/xid/0b7e9ckw00yq6fje-08w6gk
Out[2]=2

Set the derivative filter of a PID controller:
In[3]:=3

✖
https://wolfram.com/xid/0b7e9ckw00yq6fje-v5b2gz
Out[3]=3

Wolfram Research (2012), PIDDerivativeFilter, Wolfram Language function, https://reference.wolfram.com/language/ref/PIDDerivativeFilter.html.
✖
Wolfram Research (2012), PIDDerivativeFilter, Wolfram Language function, https://reference.wolfram.com/language/ref/PIDDerivativeFilter.html.
Text
Wolfram Research (2012), PIDDerivativeFilter, Wolfram Language function, https://reference.wolfram.com/language/ref/PIDDerivativeFilter.html.
✖
Wolfram Research (2012), PIDDerivativeFilter, Wolfram Language function, https://reference.wolfram.com/language/ref/PIDDerivativeFilter.html.
CMS
Wolfram Language. 2012. "PIDDerivativeFilter." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PIDDerivativeFilter.html.
✖
Wolfram Language. 2012. "PIDDerivativeFilter." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PIDDerivativeFilter.html.
APA
Wolfram Language. (2012). PIDDerivativeFilter. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PIDDerivativeFilter.html
✖
Wolfram Language. (2012). PIDDerivativeFilter. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PIDDerivativeFilter.html
BibTeX
✖
@misc{reference.wolfram_2025_pidderivativefilter, author="Wolfram Research", title="{PIDDerivativeFilter}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/PIDDerivativeFilter.html}", note=[Accessed: 19-June-2025
]}
BibLaTeX
✖
@online{reference.wolfram_2025_pidderivativefilter, organization={Wolfram Research}, title={PIDDerivativeFilter}, year={2012}, url={https://reference.wolfram.com/language/ref/PIDDerivativeFilter.html}, note=[Accessed: 19-June-2025
]}