WOLFRAM

gives a mesh region representing the n^(th)-step Sierpiński triangle.

gives the n^(th)-step Sierpiński sponge in dimension d.

Details and Options

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

A 2D Sierpiński mesh:

Out[1]=1

Areas of the approximations to the Sierpiński mesh:

Out[2]=2

A 3D Sierpiński mesh:

Out[1]=1

Scope  (3)Survey of the scope of standard use cases

A 2D Sierpiński mesh:

Out[1]=1

A 3D Sierpiński mesh:

Out[1]=1

The ^(th) approximation of the Sierpiński mesh:

Out[1]=1

Options  (12)Common values & functionality for each option

DataRange  (1)

DataRange allows you to specify the range of mesh coordinates to generate:

Out[1]=1
Out[2]=2

Specify a different range:

Out[3]=3
Out[4]=4

MeshCellHighlight  (2)

MeshCellHighlight allows you to specify highlighting for parts of a SierpinskiMesh:

Out[1]=1

Individual cells can be highlighted using their cell index:

Out[1]=1

Or by the cell itself:

Out[2]=2

MeshCellLabel  (2)

MeshCellLabel can be used to label parts of a SierpinskiMesh:

Out[1]=1

Individual cells can be labeled using their cell index:

Out[1]=1

Or by the cell itself:

Out[2]=2

MeshCellMarker  (1)

MeshCellMarker can be used to assign values to parts of a SierpinskiMesh:

Out[7]=7

Use MeshCellLabel to show the markers:

Out[8]=8

MeshCellShapeFunction  (2)

MeshCellShapeFunction can be used to assign values to parts of a SierpinskiMesh:

Out[1]=1

Individual cells can be drawn using their cell index:

Out[1]=1

Or by the cell itself:

Out[2]=2

MeshCellStyle  (2)

MeshCellStyle allows you to specify styling for parts of a SierpinskiMesh:

Out[1]=1

Individual cells can be highlighted using their cell index:

Out[1]=1

Or by the cell itself:

Out[2]=2

PlotTheme  (2)

Use a theme with grid lines and a legend:

Out[1]=1

Use a theme to draw a wireframe:

Out[1]=1

Applications  (1)Sample problems that can be solved with this function

SierpinskiMesh is generated from a triangle by repeatedly removing the middle triangle of the cells:

Out[3]=3

In 3D:

Out[1]=1

Properties & Relations  (5)Properties of the function, and connections to other functions

The output of SierpinskiMesh is always a full-dimensional MeshRegion:

Out[1]=1
Out[2]=2

SierpinskiMesh consists of triangles in 2D:

Out[1]=1
Out[2]=2

Tetrahedrons in 3D:

Out[3]=3
Out[4]=4

Find the volume of the Sierpiński mesh in 3D at each stage:

Out[1]=1
Out[2]=2

Find the boundary mesh region of SierpinskiMesh:

Out[1]=1
Out[2]=2

DataRangerange is equivalent to using RescalingTransform[{},range]:

Out[1]=1

Use RescalingTransform:

Out[3]=3

Possible Issues  (1)Common pitfalls and unexpected behavior

SierpinskiMesh can be too large to generate:

Out[1]=1
Wolfram Research (2017), SierpinskiMesh, Wolfram Language function, https://reference.wolfram.com/language/ref/SierpinskiMesh.html.
Wolfram Research (2017), SierpinskiMesh, Wolfram Language function, https://reference.wolfram.com/language/ref/SierpinskiMesh.html.

Text

Wolfram Research (2017), SierpinskiMesh, Wolfram Language function, https://reference.wolfram.com/language/ref/SierpinskiMesh.html.

Wolfram Research (2017), SierpinskiMesh, Wolfram Language function, https://reference.wolfram.com/language/ref/SierpinskiMesh.html.

CMS

Wolfram Language. 2017. "SierpinskiMesh." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SierpinskiMesh.html.

Wolfram Language. 2017. "SierpinskiMesh." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SierpinskiMesh.html.

APA

Wolfram Language. (2017). SierpinskiMesh. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SierpinskiMesh.html

Wolfram Language. (2017). SierpinskiMesh. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SierpinskiMesh.html

BibTeX

@misc{reference.wolfram_2025_sierpinskimesh, author="Wolfram Research", title="{SierpinskiMesh}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/SierpinskiMesh.html}", note=[Accessed: 29-March-2025 ]}

@misc{reference.wolfram_2025_sierpinskimesh, author="Wolfram Research", title="{SierpinskiMesh}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/SierpinskiMesh.html}", note=[Accessed: 29-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_sierpinskimesh, organization={Wolfram Research}, title={SierpinskiMesh}, year={2017}, url={https://reference.wolfram.com/language/ref/SierpinskiMesh.html}, note=[Accessed: 29-March-2025 ]}

@online{reference.wolfram_2025_sierpinskimesh, organization={Wolfram Research}, title={SierpinskiMesh}, year={2017}, url={https://reference.wolfram.com/language/ref/SierpinskiMesh.html}, note=[Accessed: 29-March-2025 ]}