SpheroidalJoiningFactor

SpheroidalJoiningFactor[n,m,γ]

次数 n で位数 m の回転楕円体連結因子を与える.

詳細

例題

すべて開くすべて閉じる

  (2)

数値的に評価する:

実数の部分集合上でプロットする:

スコープ  (9)

数値評価  (4)

数値的に評価する:

高精度で評価する:

出力精度は入力精度に従う:

複素数入力:

高精度で効率的に評価する:

特定の値  (3)

ゼロにおける値:

SpheroidalJoiningFactor[0,1/2,x]=5となるような x の値を求める:

SpheroidalJoiningFactorは要素単位でリストに縫い込まれる:

可視化  (2)

SpheroidalJoiningFactor関数をプロットする:

SpheroidalJoiningFactor[2,1,x+i y]の実部をプロットする:

SpheroidalJoiningFactor[2,1,x+i y]の虚部をプロットする:

アプリケーション  (1)

ラジアル回転楕円体関数と回転楕円体角度関数の関係:

数値的に検証する:

考えられる問題  (1)

回転楕円体関数は n の半整数値と m の一般的な値については評価しない:

Wolfram Research (2007), SpheroidalJoiningFactor, Wolfram言語関数, https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html.

テキスト

Wolfram Research (2007), SpheroidalJoiningFactor, Wolfram言語関数, https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html.

CMS

Wolfram Language. 2007. "SpheroidalJoiningFactor." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html.

APA

Wolfram Language. (2007). SpheroidalJoiningFactor. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html

BibTeX

@misc{reference.wolfram_2024_spheroidaljoiningfactor, author="Wolfram Research", title="{SpheroidalJoiningFactor}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html}", note=[Accessed: 18-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_spheroidaljoiningfactor, organization={Wolfram Research}, title={SpheroidalJoiningFactor}, year={2007}, url={https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html}, note=[Accessed: 18-November-2024 ]}