WOLFRAM

SpheroidalJoiningFactor
SpheroidalJoiningFactor

给出 nm 次球面连接因子.

更多信息

范例

打开所有单元关闭所有单元

基本范例  (2)常见实例总结

数值运算:

Out[1]=1

在实数的子集上绘图:

Out[1]=1

范围  (9)标准用法实例范围调查

数值计算  (4)

数值计算:

Out[1]=1
Out[2]=2

高精度计算:

Out[1]=1
Out[2]=2

输出的精度与输入的精度一致:

Out[3]=3
Out[4]=4

复数输入:

Out[1]=1

高精度条件下进行高效计算:

Out[1]=1
Out[2]=2

特殊值  (3)

零处的值:

Out[1]=1

求满足 SpheroidalJoiningFactor[0,1/2,x]=5x 值:

Out[1]=1
Out[2]=2

SpheroidalJoiningFactor 逐项作用于列表的各个元素:

Out[1]=1

可视化  (2)

绘制 SpheroidalJoiningFactor 函数:

Out[1]=1

绘制 SpheroidalJoiningFactor[2,1,x+i y] 的实部:

Out[1]=1

绘制 SpheroidalJoiningFactor[2,1,x+i y] 的虚部:

Out[2]=2

应用  (1)用该函数可以解决的问题范例

径向函数和角球体函数之间的关系:

代入数值进行检查:

Out[2]=2

可能存在的问题  (1)常见隐患和异常行为

n 取半整数和 m 取一般值情况下,球体函数不进行计算:

Out[1]=1
Wolfram Research (2007),SpheroidalJoiningFactor,Wolfram 语言函数,https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html.
Wolfram Research (2007),SpheroidalJoiningFactor,Wolfram 语言函数,https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html.

文本

Wolfram Research (2007),SpheroidalJoiningFactor,Wolfram 语言函数,https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html.

Wolfram Research (2007),SpheroidalJoiningFactor,Wolfram 语言函数,https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html.

CMS

Wolfram 语言. 2007. "SpheroidalJoiningFactor." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html.

Wolfram 语言. 2007. "SpheroidalJoiningFactor." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html.

APA

Wolfram 语言. (2007). SpheroidalJoiningFactor. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html 年

Wolfram 语言. (2007). SpheroidalJoiningFactor. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html 年

BibTeX

@misc{reference.wolfram_2025_spheroidaljoiningfactor, author="Wolfram Research", title="{SpheroidalJoiningFactor}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html}", note=[Accessed: 07-April-2025 ]}

@misc{reference.wolfram_2025_spheroidaljoiningfactor, author="Wolfram Research", title="{SpheroidalJoiningFactor}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html}", note=[Accessed: 07-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_spheroidaljoiningfactor, organization={Wolfram Research}, title={SpheroidalJoiningFactor}, year={2007}, url={https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html}, note=[Accessed: 07-April-2025 ]}

@online{reference.wolfram_2025_spheroidaljoiningfactor, organization={Wolfram Research}, title={SpheroidalJoiningFactor}, year={2007}, url={https://reference.wolfram.com/language/ref/SpheroidalJoiningFactor.html}, note=[Accessed: 07-April-2025 ]}