WOLFRAM

SymbolicDeltaProductArray
SymbolicDeltaProductArray

New in 14.1[Experimental]

SymbolicDeltaProductArray[{n1,n2,},{{j1,1,j1,2,},{j2,1,j2,2,},}]

represents an n1×n2× array with elements ai1,i2, equal to 1 if all ijp,1ijp,2, and 0 otherwise.

Details

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

The derivative of Total[a] with respect to a is a SymbolicDeltaProductArray:

Out[2]=2

The derivative of Tr[a] is a SymbolicDeltaProductArray as well:

Out[3]=3

Create a SymbolicDeltaProductArray with explicit numeric dimensions:

Out[1]=1

Convert a to an explicit array:

Out[2]=2

Convert a to a SparseArray:

Out[3]=3

Scope  (2)Survey of the scope of standard use cases

Array with explicit numeric dimensions:

Out[1]=1

Convert to a SparseArray:

Out[2]=2

Convert to an explicit array:

Out[3]=3

Array with symbolic dimensions:

Out[1]=1
Out[2]=2
Out[3]=3

Properties & Relations  (7)Properties of the function, and connections to other functions

SymbolicDeltaProductArray gives a symbolic representation of the array:

Out[1]=1

Use Normal to convert a to an explicit array:

Out[2]=2

IdentityMatrix[n] gives an explicit version of SymbolicDeltaProductArray[{n,n},{{1,2}}]:

Out[1]=1
Out[2]=2
Out[3]=3

SymbolicIdentityArray is a special case of SymbolicDeltaProductArray:

Out[1]=1
Out[2]=2
Out[3]=3

SymbolicOnesArray is a special case of SymbolicDeltaProductArray:

Out[1]=1

The derivative of Total[a] with respect to a is a SymbolicDeltaProductArray:

Out[2]=2
Out[3]=3
Out[4]=4

The derivative of Tr[a] is a SymbolicDeltaProductArray:

Out[2]=2

The derivative of Total[a] with respect to a can be computed in the indexed format:

Out[1]=1
Out[2]=2
Out[3]=3

Compare with the results computed in the symbolic array format:

Out[4]=4
Out[5]=5
Out[6]=6
Wolfram Research (2024), SymbolicDeltaProductArray, Wolfram Language function, https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html.
Wolfram Research (2024), SymbolicDeltaProductArray, Wolfram Language function, https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html.

Text

Wolfram Research (2024), SymbolicDeltaProductArray, Wolfram Language function, https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html.

Wolfram Research (2024), SymbolicDeltaProductArray, Wolfram Language function, https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html.

CMS

Wolfram Language. 2024. "SymbolicDeltaProductArray." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html.

Wolfram Language. 2024. "SymbolicDeltaProductArray." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html.

APA

Wolfram Language. (2024). SymbolicDeltaProductArray. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html

Wolfram Language. (2024). SymbolicDeltaProductArray. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html

BibTeX

@misc{reference.wolfram_2025_symbolicdeltaproductarray, author="Wolfram Research", title="{SymbolicDeltaProductArray}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html}", note=[Accessed: 03-April-2025 ]}

@misc{reference.wolfram_2025_symbolicdeltaproductarray, author="Wolfram Research", title="{SymbolicDeltaProductArray}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html}", note=[Accessed: 03-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_symbolicdeltaproductarray, organization={Wolfram Research}, title={SymbolicDeltaProductArray}, year={2024}, url={https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html}, note=[Accessed: 03-April-2025 ]}

@online{reference.wolfram_2025_symbolicdeltaproductarray, organization={Wolfram Research}, title={SymbolicDeltaProductArray}, year={2024}, url={https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html}, note=[Accessed: 03-April-2025 ]}