SymbolicDeltaProductArray
✖
SymbolicDeltaProductArray
represents an n1×n2×… array with elements ai1,i2,… equal to 1 if all ijp,1ijp,2…, and 0 otherwise.
Details

- Valid dimension specifications nk in SymbolicDeltaProductArray[{n1,…,nr},{{j1,1,j1,2,…},{j2,1,j2,2,…},…}] are positive integers. Valid index specifications are integers 1≤jp,q≤r. It is also possible to work with symbolic dimension and index specifications.
- SymbolicDeltaProductArray[{n1,…,nr},{{j1,1,…,j1,k1},…,{jm,1,…,jm,km}}] is equal to Table[KroneckerDelta[ij1,1,…,ij1,k1]…KroneckerDelta[ijm,1,…,ijm,km],{i1,n1},…,{ir,nr}].
- SymbolicDeltaProductArray may be produced by differentiation involving ArraySymbol objects.
- For a SymbolicDeltaProductArray a array with positive integer specifications ni and jp,q, Normal[a] converts a to an explicit array. SparseArray[a] converts a to a SparseArray.
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
The derivative of Total[a] with respect to a is a SymbolicDeltaProductArray:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-vp0kt

https://wolfram.com/xid/0cf0wp5wiuuqsc6-vxjxp

The derivative of Tr[a] is a SymbolicDeltaProductArray as well:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-guotj

Create a SymbolicDeltaProductArray with explicit numeric dimensions:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-cfqmya

Convert a to an explicit array:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-d2sqr7

Convert a to a SparseArray:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-wr1qc

Scope (2)Survey of the scope of standard use cases
Array with explicit numeric dimensions:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-byl14x

Convert to a SparseArray:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-euxhim


https://wolfram.com/xid/0cf0wp5wiuuqsc6-dnutgt

Array with symbolic dimensions:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-drm7id


https://wolfram.com/xid/0cf0wp5wiuuqsc6-e1t8f2


https://wolfram.com/xid/0cf0wp5wiuuqsc6-zejpl

Properties & Relations (7)Properties of the function, and connections to other functions
SymbolicDeltaProductArray gives a symbolic representation of the array:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-z7pn2i

Use Normal to convert a to an explicit array:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-4mh225

IdentityMatrix[n] gives an explicit version of SymbolicDeltaProductArray[{n,n},{{1,2}}]:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-b651zf


https://wolfram.com/xid/0cf0wp5wiuuqsc6-p2dtqe


https://wolfram.com/xid/0cf0wp5wiuuqsc6-kcbwdh

SymbolicIdentityArray is a special case of SymbolicDeltaProductArray:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-60ex52


https://wolfram.com/xid/0cf0wp5wiuuqsc6-el9d6c


https://wolfram.com/xid/0cf0wp5wiuuqsc6-cakgwq

SymbolicOnesArray is a special case of SymbolicDeltaProductArray:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-xp6ykb

The derivative of Total[a] with respect to a is a SymbolicDeltaProductArray:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-qhjmc2

https://wolfram.com/xid/0cf0wp5wiuuqsc6-ophey7


https://wolfram.com/xid/0cf0wp5wiuuqsc6-bmx98s


https://wolfram.com/xid/0cf0wp5wiuuqsc6-rc3jcn

The derivative of Tr[a] is a SymbolicDeltaProductArray:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-bnnk0y

https://wolfram.com/xid/0cf0wp5wiuuqsc6-nu4aok

The derivative of Total[a] with respect to a can be computed in the indexed format:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-g3tbey


https://wolfram.com/xid/0cf0wp5wiuuqsc6-jhbxhy


https://wolfram.com/xid/0cf0wp5wiuuqsc6-bzpxvn

Compare with the results computed in the symbolic array format:

https://wolfram.com/xid/0cf0wp5wiuuqsc6-fb8bcv


https://wolfram.com/xid/0cf0wp5wiuuqsc6-fh4axf


https://wolfram.com/xid/0cf0wp5wiuuqsc6-dhbl4x

Wolfram Research (2024), SymbolicDeltaProductArray, Wolfram Language function, https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html.
Text
Wolfram Research (2024), SymbolicDeltaProductArray, Wolfram Language function, https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html.
Wolfram Research (2024), SymbolicDeltaProductArray, Wolfram Language function, https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html.
CMS
Wolfram Language. 2024. "SymbolicDeltaProductArray." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html.
Wolfram Language. 2024. "SymbolicDeltaProductArray." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html.
APA
Wolfram Language. (2024). SymbolicDeltaProductArray. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html
Wolfram Language. (2024). SymbolicDeltaProductArray. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html
BibTeX
@misc{reference.wolfram_2025_symbolicdeltaproductarray, author="Wolfram Research", title="{SymbolicDeltaProductArray}", year="2024", howpublished="\url{https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html}", note=[Accessed: 03-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_symbolicdeltaproductarray, organization={Wolfram Research}, title={SymbolicDeltaProductArray}, year={2024}, url={https://reference.wolfram.com/language/ref/SymbolicDeltaProductArray.html}, note=[Accessed: 03-April-2025
]}