Normal
✖
Normal
Details

- Possible heads h and hi in Normal[expr,h] and Normal[expr,{h1,h2,…}] are converted as follows:
-
Association list of rules Column ordinary list ConditionalExpression expression in the first argument CylindricalDecompositionFunction Boolean combination of equations and inequalities Dataset lists and associations Dispatch list of rules FittedModel best fit function GraphicsComplex ordinary lists of graphics primitives and directives Grid list of lists Quantity (purely numeric units) numbers RootSum explicit sums of Root objects Row ordinary list Series or SeriesData expression with higher-order terms truncated SparseArray ordinary array StructuredArray ordinary array QuantityArray, SymmetrizedArray - ordinary array
TemporalData ordinary array of time-value pairs TimeSeriesModel underlying time series process
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Create a normal dense list from a sparse array:

https://wolfram.com/xid/0bn61gm-eid


https://wolfram.com/xid/0bn61gm-dj8

Create a normal expression from a series expansion:

https://wolfram.com/xid/0bn61gm-bvt


https://wolfram.com/xid/0bn61gm-nsf

Convert an association to a list of rules:

https://wolfram.com/xid/0bn61gm-lmhnl

Normal acts on the first level only:

https://wolfram.com/xid/0bn61gm-kju2fu

Scope (5)Survey of the scope of standard use cases
Convert RootSum objects to Root objects:

https://wolfram.com/xid/0bn61gm-ekanw


https://wolfram.com/xid/0bn61gm-1f719

Typically the RootSum objects will give more accurate numerical values:

https://wolfram.com/xid/0bn61gm-b7dry2


https://wolfram.com/xid/0bn61gm-6rn1z

Convert from a GraphicsComplex object to graphics primitives:

https://wolfram.com/xid/0bn61gm-f8afdl

https://wolfram.com/xid/0bn61gm-e94beo

Both forms produce the same image:

https://wolfram.com/xid/0bn61gm-bt4b95

Normal will affect expressions nested inside other expressions:

https://wolfram.com/xid/0bn61gm-hhusub


https://wolfram.com/xid/0bn61gm-fvzhz7

Normal converts different types of expressions by default:

https://wolfram.com/xid/0bn61gm-x5fjpj


https://wolfram.com/xid/0bn61gm-fm5qbs

Convert only the sparse array:

https://wolfram.com/xid/0bn61gm-5182go

Normalize the series and the association but not the sparse array:

https://wolfram.com/xid/0bn61gm-0r0w6j

Convert CylindricalDecompositionFunction to equations and inequalities:

https://wolfram.com/xid/0bn61gm-bg9zj6


https://wolfram.com/xid/0bn61gm-o4ceg

Applications (1)Sample problems that can be solved with this function
Compare the actual error to the theoretical asymptotic error for a difference quotient:

https://wolfram.com/xid/0bn61gm-b57oax

https://wolfram.com/xid/0bn61gm-kz2txv

Asymptotic truncation error for small :

https://wolfram.com/xid/0bn61gm-qzgs4

Compare actual and asymptotic errors as a function of for
at
:

https://wolfram.com/xid/0bn61gm-b1roco

With higher precision, the asymptotic error holds for smaller :

https://wolfram.com/xid/0bn61gm-hurkcx

Properties & Relations (1)Properties of the function, and connections to other functions
For f that work with SparseArray objects s, often Normal[f[s]]===f[Normal[s]]:

https://wolfram.com/xid/0bn61gm-u9jb7


https://wolfram.com/xid/0bn61gm-b0uguy


https://wolfram.com/xid/0bn61gm-lvb6c


https://wolfram.com/xid/0bn61gm-jyjfi


https://wolfram.com/xid/0bn61gm-b58769


https://wolfram.com/xid/0bn61gm-bq1vbd

Wolfram Research (1988), Normal, Wolfram Language function, https://reference.wolfram.com/language/ref/Normal.html (updated 2015).
Text
Wolfram Research (1988), Normal, Wolfram Language function, https://reference.wolfram.com/language/ref/Normal.html (updated 2015).
Wolfram Research (1988), Normal, Wolfram Language function, https://reference.wolfram.com/language/ref/Normal.html (updated 2015).
CMS
Wolfram Language. 1988. "Normal." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/Normal.html.
Wolfram Language. 1988. "Normal." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/Normal.html.
APA
Wolfram Language. (1988). Normal. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Normal.html
Wolfram Language. (1988). Normal. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Normal.html
BibTeX
@misc{reference.wolfram_2025_normal, author="Wolfram Research", title="{Normal}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/Normal.html}", note=[Accessed: 31-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_normal, organization={Wolfram Research}, title={Normal}, year={2015}, url={https://reference.wolfram.com/language/ref/Normal.html}, note=[Accessed: 31-March-2025
]}