WOLFRAM

gives a TransformationFunction that represents translation of points by a vector v.

Details

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

Generate a function representing a translation by the vector {a,b}:

Out[1]=1

Apply the transformation function to a vector:

Out[2]=2

Scope  (3)Survey of the scope of standard use cases

Translation in four dimensions:

Out[1]=1
Out[2]=2

The inverse transform:

Out[3]=3
Out[4]=4

Apply the transform five times:

Out[5]=5

Use matrix operations and homogeneous coordinates:

Out[6]=6

Transformation applied to a 2D shape:

Out[2]=2

Transformation applied to a 3D shape:

Out[2]=2

Applications  (2)Sample problems that can be solved with this function

Transforming graphics primitives:

Out[1]=1

A random translation walk:

Out[1]=1

Properties & Relations  (4)Properties of the function, and connections to other functions

The translation transformation is an isometric transform, i.e. preserves distances:

Out[4]=4

Translating by and then by is the same as translating by :

Out[1]=1

The inverse of translating by is the same as translating by :

Out[1]=1

For geometric transformations, use Translate directly:

Out[1]=1
Out[2]=2

Neat Examples  (1)Surprising or curious use cases

Scale a 3D object about a point :

Translate along the axis:

Out[3]=3

Translate along the axis:

Out[4]=4

Translate along the axis:

Out[5]=5
Wolfram Research (2007), TranslationTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/TranslationTransform.html.
Wolfram Research (2007), TranslationTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/TranslationTransform.html.

Text

Wolfram Research (2007), TranslationTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/TranslationTransform.html.

Wolfram Research (2007), TranslationTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/TranslationTransform.html.

CMS

Wolfram Language. 2007. "TranslationTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/TranslationTransform.html.

Wolfram Language. 2007. "TranslationTransform." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/TranslationTransform.html.

APA

Wolfram Language. (2007). TranslationTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/TranslationTransform.html

Wolfram Language. (2007). TranslationTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/TranslationTransform.html

BibTeX

@misc{reference.wolfram_2025_translationtransform, author="Wolfram Research", title="{TranslationTransform}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/TranslationTransform.html}", note=[Accessed: 09-May-2025 ]}

@misc{reference.wolfram_2025_translationtransform, author="Wolfram Research", title="{TranslationTransform}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/TranslationTransform.html}", note=[Accessed: 09-May-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_translationtransform, organization={Wolfram Research}, title={TranslationTransform}, year={2007}, url={https://reference.wolfram.com/language/ref/TranslationTransform.html}, note=[Accessed: 09-May-2025 ]}

@online{reference.wolfram_2025_translationtransform, organization={Wolfram Research}, title={TranslationTransform}, year={2007}, url={https://reference.wolfram.com/language/ref/TranslationTransform.html}, note=[Accessed: 09-May-2025 ]}