MaximalMatching[g]
gives the list of edges associated with a maximal matching of graph g.


MaximalMatching
MaximalMatching[g]
gives the list of edges associated with a maximal matching of graph g.
Details and Options
- MaximalMatching functionality is now available in the built-in Wolfram Language function FindIndependentEdgeSet.
- To use MaximalMatching, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
Examples
Basic Examples (2)
MaximalMatching has been superseded by FindIndependentEdgeSet:
Tech Notes
Related Guides
-
▪
- Constructing Graphs ▪
- Graph Algorithms ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), MaximalMatching, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MaximalMatching.html.
CMS
Wolfram Language. 2012. "MaximalMatching." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MaximalMatching.html.
APA
Wolfram Language. (2012). MaximalMatching. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/MaximalMatching.html
BibTeX
@misc{reference.wolfram_2025_maximalmatching, author="Wolfram Research", title="{MaximalMatching}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MaximalMatching.html}", note=[Accessed: 14-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_maximalmatching, organization={Wolfram Research}, title={MaximalMatching}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MaximalMatching.html}, note=[Accessed: 14-August-2025]}