MaximumClique[g]
finds a largest clique in graph g.
MaximumClique[g,k]
returns a k-clique, if such a thing exists in g; otherwise it returns {}.


MaximumClique
MaximumClique[g]
finds a largest clique in graph g.
MaximumClique[g,k]
returns a k-clique, if such a thing exists in g; otherwise it returns {}.
Details and Options
- MaximumClique functionality is now available in the built-in Wolfram Language function FindClique.
- To use MaximumClique, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
Tech Notes
Related Guides
-
▪
- Constructing Graphs ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), MaximumClique, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html.
CMS
Wolfram Language. 2012. "MaximumClique." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html.
APA
Wolfram Language. (2012). MaximumClique. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html
BibTeX
@misc{reference.wolfram_2025_maximumclique, author="Wolfram Research", title="{MaximumClique}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html}", note=[Accessed: 14-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_maximumclique, organization={Wolfram Research}, title={MaximumClique}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MaximumClique.html}, note=[Accessed: 14-August-2025]}