MinimumVertexCover[g]
finds a minimum vertex cover of graph g.


MinimumVertexCover
MinimumVertexCover[g]
finds a minimum vertex cover of graph g.
Details and Options
- MinimumVertexCover functionality is now available in the built-in Wolfram Language function FindVertexCover.
- To use MinimumVertexCover, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
- For bipartite graphs, the function uses the polynomial-time Hungarian algorithm. For everything else, the function uses brute force.
Tech Notes
Related Guides
-
▪
- Constructing Graphs ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), MinimumVertexCover, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexCover.html.
CMS
Wolfram Language. 2012. "MinimumVertexCover." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexCover.html.
APA
Wolfram Language. (2012). MinimumVertexCover. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexCover.html
BibTeX
@misc{reference.wolfram_2025_minimumvertexcover, author="Wolfram Research", title="{MinimumVertexCover}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexCover.html}", note=[Accessed: 14-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_minimumvertexcover, organization={Wolfram Research}, title={MinimumVertexCover}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MinimumVertexCover.html}, note=[Accessed: 14-August-2025]}