BellmanFord
BellmanFord[g,v]
gives a shortest-path spanning tree and associated distances from vertex v of graph g. The shortest-path spanning tree is given by a list in which element is the predecessor of vertex in the shortest-path spanning tree. BellmanFord works correctly even when the edge weights are negative, provided there are no negative cycles.
Details and Options
- BellmanFord functionality is now available in the built-in Wolfram Language function FindShortestPath.
- To use BellmanFord, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
Text
Wolfram Research (2012), BellmanFord, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/BellmanFord.html.
CMS
Wolfram Language. 2012. "BellmanFord." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/BellmanFord.html.
APA
Wolfram Language. (2012). BellmanFord. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/BellmanFord.html