ShortestPath[g,start,end]
finds a shortest path between vertices start and end in graph g.


ShortestPath
ShortestPath[g,start,end]
finds a shortest path between vertices start and end in graph g.
Details and Options
- ShortestPath functionality is now available in the built-in Wolfram Language function FindShortestPath.
- To use ShortestPath, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
- An option Algorithm that takes on the values Automatic, Dijkstra, or BellmanFord is provided. This allows a choice between using Dijkstra's algorithm and the Bellman–Ford algorithm.
- The default is Algorithm->Automatic. In this case, depending on whether edges have negative weights and depending on the density of the graph, the algorithm chooses between BellmanFord and Dijkstra.
Examples
Basic Examples (2)
ShortestPath has been superseded by FindShortestPath:
Tech Notes
Related Guides
-
▪
- Combinatorica Package ▪
- Graph Algorithms ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), ShortestPath, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/ShortestPath.html.
CMS
Wolfram Language. 2012. "ShortestPath." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/ShortestPath.html.
APA
Wolfram Language. (2012). ShortestPath. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/ShortestPath.html
BibTeX
@misc{reference.wolfram_2025_shortestpath, author="Wolfram Research", title="{ShortestPath}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/ShortestPath.html}", note=[Accessed: 13-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_shortestpath, organization={Wolfram Research}, title={ShortestPath}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/ShortestPath.html}, note=[Accessed: 13-August-2025]}