BellmanFord
BellmanFord[g,v]
gives a shortest-path spanning tree and associated distances from vertex v of graph g. The shortest-path spanning tree is given by a list in which element is the predecessor of vertex in the shortest-path spanning tree. BellmanFord works correctly even when the edge weights are negative, provided there are no negative cycles.
更多信息和选项
- BellmanFord functionality is now available in the built-in Wolfram Language function FindShortestPath.
- To use BellmanFord, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
文本
Wolfram Research (2012),BellmanFord,Wolfram 语言函数,https://reference.wolfram.com/language/Combinatorica/ref/BellmanFord.html.
CMS
Wolfram 语言. 2012. "BellmanFord." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/BellmanFord.html.
APA
Wolfram 语言. (2012). BellmanFord. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/Combinatorica/ref/BellmanFord.html 年