GraphUnion[g1,g2,…]
constructs the union of graphs ,
, and so forth.
GraphUnion[n,g]
constructs copies of graph
, for any non-negative integer
.


GraphUnion
GraphUnion[g1,g2,…]
constructs the union of graphs ,
, and so forth.
GraphUnion[n,g]
constructs copies of graph
, for any non-negative integer
.
Details and Options
- GraphUnion functionality is now available in the built-in Wolfram Language function GraphDisjointUnion.
- To use GraphUnion, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
See Also
Tech Notes
Related Guides
-
▪
- Constructing Graphs ▪
- Graph Construction and Representations ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), GraphUnion, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/GraphUnion.html.
CMS
Wolfram Language. 2012. "GraphUnion." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/GraphUnion.html.
APA
Wolfram Language. (2012). GraphUnion. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/GraphUnion.html
BibTeX
@misc{reference.wolfram_2025_graphunion, author="Wolfram Research", title="{GraphUnion}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/GraphUnion.html}", note=[Accessed: 13-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_graphunion, organization={Wolfram Research}, title={GraphUnion}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/GraphUnion.html}, note=[Accessed: 13-August-2025]}