MinimumSpanningTree[g]
uses Kruskal's algorithm to find a minimum spanning tree of graph g.


MinimumSpanningTree
MinimumSpanningTree[g]
uses Kruskal's algorithm to find a minimum spanning tree of graph g.
Details and Options
- MinimumSpanningTree functionality is now available in the built-in Wolfram Language function FindSpanningTree.
- To use MinimumSpanningTree, you first need to load the Combinatorica Package using Needs["Combinatorica`"].
Tech Notes
Related Guides
-
▪
- Combinatorica Package ▪
- Graph Algorithms ▪
- Graphs & Networks ▪
- Graph Visualization ▪
- Computation on Graphs ▪
- Graph Construction & Representation ▪
- Graphs and Matrices ▪
- Graph Properties & Measurements ▪
- Graph Operations and Modifications ▪
- Statistical Analysis ▪
- Social Network Analysis ▪
- Graph Properties ▪
- Mathematical Data Formats ▪
- Discrete Mathematics
Text
Wolfram Research (2012), MinimumSpanningTree, Wolfram Language function, https://reference.wolfram.com/language/Combinatorica/ref/MinimumSpanningTree.html.
CMS
Wolfram Language. 2012. "MinimumSpanningTree." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/Combinatorica/ref/MinimumSpanningTree.html.
APA
Wolfram Language. (2012). MinimumSpanningTree. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/Combinatorica/ref/MinimumSpanningTree.html
BibTeX
@misc{reference.wolfram_2025_minimumspanningtree, author="Wolfram Research", title="{MinimumSpanningTree}", year="2012", howpublished="\url{https://reference.wolfram.com/language/Combinatorica/ref/MinimumSpanningTree.html}", note=[Accessed: 13-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_minimumspanningtree, organization={Wolfram Research}, title={MinimumSpanningTree}, year={2012}, url={https://reference.wolfram.com/language/Combinatorica/ref/MinimumSpanningTree.html}, note=[Accessed: 13-August-2025]}