FEMDocumentation`
FEMDocumentation`

ElementMeshInterpolation

ElementMeshInterpolation[{emesh},{f1,f2,}]

constructs an InterpolatingFunction object of the function values fj, corresponding to coordinate j of an ElementMesh object.

ElementMeshInterpolation[{{t1,t2,},emesh},
{{{f11,f12,}},{{f21,f22,}},}]

constructs an interpolation of the function values fij, corresponding to discrete ti and coordinate j of an ElementMesh object.

更多信息和选项

范例

打开所有单元关闭所有单元

基本范例  (2)

Load the package:

Set up an ElementMesh:

Set up function values at the mesh coordinates:

Create an InterpolatingFunction:

Apply the function to find interpolated values:

Plot the interpolating function:

Generate function values for a time-dependent interpolation:

Construct a time-dependent interpolating function:

Options  (5)

"ExtrapolationHandler"  (5)

Construct an InterpolatingFunction:

Query the InterpolatingFunction outside of its domain:

Construct an InterpolatingFunction with an extrapolation handler that returns Indeterminate for queries outside the domain:

Query the InterpolatingFunction outside of its domain:

Construct an InterpolatingFunction with an extrapolation handler that returns 0 outside its domain:

Query the InterpolatingFunction outside of its domain:

Construct an InterpolatingFunction with an extrapolation handler that returns Indeterminate outside its domain and does not give a warning message:

Query the InterpolatingFunction outside of its domain:

The default for NDSolve and the finite element method is to return InterpolatingFunction objects that do not extrapolate outside of the given domain:

Allow InterpolatingFunction objects generated by NDSolve to extrapolate when evaluated outside of the simulation domain and not warn about it:

While it is not generally possible to construct periodic interpolating functions for arbitrary meshes, one can mimic periodic interpolating functions based on rectangular regions by specifying an "ExtrapolatiopnHandler".

Generate data and a mesh:

Generate a temporary interpolating function from this mesh and data:

Use the extrapolation handler to map the coordinates outside of the meshed domain back into the domain and evaluate over the temporary interpolating function:

To verify that the interpolation is now periodic, visualize the function f both inside and outside the original domain:

Properties & Relations  (1)

For time-independent interpolation, ListInterpolation can also be used:

Wolfram Research (2020),ElementMeshInterpolation,Wolfram 语言函数,https://reference.wolfram.com/language/FEMDocumentation/ref/ElementMeshInterpolation.html (更新于 2021 年).

文本

Wolfram Research (2020),ElementMeshInterpolation,Wolfram 语言函数,https://reference.wolfram.com/language/FEMDocumentation/ref/ElementMeshInterpolation.html (更新于 2021 年).

CMS

Wolfram 语言. 2020. "ElementMeshInterpolation." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2021. https://reference.wolfram.com/language/FEMDocumentation/ref/ElementMeshInterpolation.html.

APA

Wolfram 语言. (2020). ElementMeshInterpolation. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/FEMDocumentation/ref/ElementMeshInterpolation.html 年

BibTeX

@misc{reference.wolfram_2024_elementmeshinterpolation, author="Wolfram Research", title="{ElementMeshInterpolation}", year="2021", howpublished="\url{https://reference.wolfram.com/language/FEMDocumentation/ref/ElementMeshInterpolation.html}", note=[Accessed: 05-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_elementmeshinterpolation, organization={Wolfram Research}, title={ElementMeshInterpolation}, year={2021}, url={https://reference.wolfram.com/language/FEMDocumentation/ref/ElementMeshInterpolation.html}, note=[Accessed: 05-November-2024 ]}