FEMDocumentation`
FEMDocumentation`

PDESolve

PDESolve[cdata,bcdata,vd,sd,mdata]

solves a PDE based on coefficient data cdata, boundary condition data bcdata, variable data vd, solution data sd and method data mdata to return new solution data.

更多信息和选项

范例

打开所有单元关闭所有单元

基本范例  (3)

Load the finite element package:

Set up a NumericalRegion:

Set up variable and solution data:

Initialize the partial differential equation data:

Set up the solution of the linear PDE . Initialize the linear coefficients:

Initialize the linear boundary condition data:

Solve the PDE:

Post-process the PDE:

Set up the solution of the nonlinear PDE . Initialize the nonlinear coefficients:

Initialize nonlinear boundary condition data:

Specify an initial guess:

Solve the nonlinear PDE:

Post-process the PDE:

Options  (8)

"FindRootOptions"  (5)

Inspect the number of function calls, steps and Jacobian evaluations needed:

Specify that PDESolve is to use the default FindRoot root-finding algorithm:

Specify that PDESolve is to use the default affine covariant Newton method:

Set up PDESolve to not use Broyden updates:

Set a PrecisionGoal for the default PDESolve FindRoot method:

"LinearSolver"  (3)

Specify PDESolve to use a direct method for LinearSolve:

Specify PDESolve to use a Krylov method for LinearSolve:

Specify PDESolve to use a customer function for LinearSolve:

Properties & Relations  (1)

Options given to PDESolve can be given to NDSolve by specifying "PDESolveOptions":

Wolfram Research (2019),PDESolve,Wolfram 语言函数,https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html (更新于 2020 年).

文本

Wolfram Research (2019),PDESolve,Wolfram 语言函数,https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html (更新于 2020 年).

CMS

Wolfram 语言. 2019. "PDESolve." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2020. https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html.

APA

Wolfram 语言. (2019). PDESolve. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html 年

BibTeX

@misc{reference.wolfram_2024_pdesolve, author="Wolfram Research", title="{PDESolve}", year="2020", howpublished="\url{https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html}", note=[Accessed: 05-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_pdesolve, organization={Wolfram Research}, title={PDESolve}, year={2020}, url={https://reference.wolfram.com/language/FEMDocumentation/ref/PDESolve.html}, note=[Accessed: 05-November-2024 ]}