MaximalBipartiteMatching
MaximalBipartiteMatching[g]
gives the maximal matching of the bipartite graph g.
Details and Options
- MaximalBipartiteMatching functionality is now available in the built-in Wolfram Language function FindIndependentEdgeSet.
- To use MaximalBipartiteMatching, you first need to load the Graph Utilities Package using Needs["GraphUtilities`"].
- MaximalBipartiteMatching gives a maximal set of nonadjacent edges between the two vertex sets of the bipartite graph.
- The bipartite graph represented by an m×n matrix consists of the row and column vertex sets R={1,2,…,m} and C={1,2,…,n}, with a vertex i∈R and j∈C connected if the matrix element gij≠0.
- The bipartite graph represented by a rule list {i1->j1,i2->j2,…} consists of vertex sets R=Union[{i1,i2,…}] and C=Union[{j1,j2,…}], with a vertex i∈R and j∈C connected if the rule i->j is included in the rule list.
- MaximalBipartiteMatching returns a list of index pairs {{i1,j1},…,{ik,jk}}, where the number of pairs k is not larger than either vertex set.
Examples
open allclose allBasic Examples (2)
A bipartite graph describing acceptable drinks for four people:
The drink each person should have, if no two people are to have the same drink:
MaximalBipartiteMatching has been superseded by FindIndependentEdgeSet:
Text
Wolfram Research (2007), MaximalBipartiteMatching, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/MaximalBipartiteMatching.html.
CMS
Wolfram Language. 2007. "MaximalBipartiteMatching." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/MaximalBipartiteMatching.html.
APA
Wolfram Language. (2007). MaximalBipartiteMatching. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/GraphUtilities/ref/MaximalBipartiteMatching.html