MaximalIndependentEdgeSet
MaximalIndependentEdgeSet[g]
gives a maximal independent edge set of an undirected graph g.
Details and Options
- MaximalIndependentEdgeSet functionality is now available in the built-in Wolfram Language function FindIndependentEdgeSet.
- To use MaximalIndependentEdgeSet, you first need to load the Graph Utilities Package using Needs["GraphUtilities`"].
- MaximalIndependentEdgeSet gives an approximate maximal set of pairwise nonadjacent edges of g.
- A maximal independent edge set of a graph is also called a maximal matching.
- The following option can be given:
-
Weighted False whether edges with higher weights are preferred when forming the maximal independent edge set
Examples
Basic Examples (2)
This shows that the maximal independent edge set contains three edges:
MaximalIndependentEdgeSet has been superseded by FindIndependentEdgeSet:
Text
Wolfram Research (2007), MaximalIndependentEdgeSet, Wolfram Language function, https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.
CMS
Wolfram Language. 2007. "MaximalIndependentEdgeSet." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.
APA
Wolfram Language. (2007). MaximalIndependentEdgeSet. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html