GraphUtilities`
GraphUtilities`
MaximalIndependentEdgeSet
As of Version 10, all the functionality of the GraphUtilities package is built into the Wolfram System. »
MaximalIndependentEdgeSet[g]
gives a maximal independent edge set of an undirected graph g.
更多信息和选项
- MaximalIndependentEdgeSet functionality is now available in the built-in Wolfram Language function FindIndependentEdgeSet.
- To use MaximalIndependentEdgeSet, you first need to load the Graph Utilities Package using Needs["GraphUtilities`"].
- MaximalIndependentEdgeSet gives an approximate maximal set of pairwise nonadjacent edges of g.
- A maximal independent edge set of a graph is also called a maximal matching.
- The following option can be given:
-
Weighted False whether edges with higher weights are preferred when forming the maximal independent edge set
范例
基本范例 (2)
This shows that the maximal independent edge set contains three edges:
MaximalIndependentEdgeSet has been superseded by FindIndependentEdgeSet:
Wolfram Research (2007),MaximalIndependentEdgeSet,Wolfram 语言函数,https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.
文本
Wolfram Research (2007),MaximalIndependentEdgeSet,Wolfram 语言函数,https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.
CMS
Wolfram 语言. 2007. "MaximalIndependentEdgeSet." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html.
APA
Wolfram 语言. (2007). MaximalIndependentEdgeSet. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentEdgeSet.html 年