GraphUtilities`
GraphUtilities`

MaximalIndependentVertexSet

As of Version 10, all the functionality of the GraphUtilities package is built into the Wolfram System. »

MaximalIndependentVertexSet[g]

gives a maximal independent vertex set of an undirected graph g.

MaximalIndependentVertexSet[g,w]

gives a maximal independent vertex set of g with vertices weighted by w.

更多信息和选项

  • MaximalIndependentVertexSet functionality is now available in the built-in Wolfram Language function FindIndependentVertexSet.
  • To use MaximalIndependentVertexSet, you first need to load the Graph Utilities Package using Needs["GraphUtilities`"].
  • MaximalIndependentVertexSet gives an (approximate) maximal set of vertices such that no two vertices form an edge. It treats the input as an undirected graph.
  • The length of the vector w must be the same as the number of vertices in g.

范例

基本范例  (2)

This specifies a small graph:

This shows that the maximal independent vertex set contains three vertices:

MaximalIndependentVertexSet has been superseded by FindIndependentVertexSet:

Wolfram Research (2007),MaximalIndependentVertexSet,Wolfram 语言函数,https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentVertexSet.html.

文本

Wolfram Research (2007),MaximalIndependentVertexSet,Wolfram 语言函数,https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentVertexSet.html.

CMS

Wolfram 语言. 2007. "MaximalIndependentVertexSet." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentVertexSet.html.

APA

Wolfram 语言. (2007). MaximalIndependentVertexSet. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentVertexSet.html 年

BibTeX

@misc{reference.wolfram_2024_maximalindependentvertexset, author="Wolfram Research", title="{MaximalIndependentVertexSet}", year="2007", howpublished="\url{https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentVertexSet.html}", note=[Accessed: 18-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_maximalindependentvertexset, organization={Wolfram Research}, title={MaximalIndependentVertexSet}, year={2007}, url={https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentVertexSet.html}, note=[Accessed: 18-November-2024 ]}