MaximalIndependentVertexSet
MaximalIndependentVertexSet[g]
gives a maximal independent vertex set of an undirected graph g.
MaximalIndependentVertexSet[g,w]
gives a maximal independent vertex set of g with vertices weighted by w.
更多信息和选项
- MaximalIndependentVertexSet functionality is now available in the built-in Wolfram Language function FindIndependentVertexSet.
- To use MaximalIndependentVertexSet, you first need to load the Graph Utilities Package using Needs["GraphUtilities`"].
- MaximalIndependentVertexSet gives an (approximate) maximal set of vertices such that no two vertices form an edge. It treats the input as an undirected graph.
- The length of the vector w must be the same as the number of vertices in g.
范例
基本范例 (2)
This shows that the maximal independent vertex set contains three vertices:
MaximalIndependentVertexSet has been superseded by FindIndependentVertexSet:
文本
Wolfram Research (2007),MaximalIndependentVertexSet,Wolfram 语言函数,https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentVertexSet.html.
CMS
Wolfram 语言. 2007. "MaximalIndependentVertexSet." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentVertexSet.html.
APA
Wolfram 语言. (2007). MaximalIndependentVertexSet. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/GraphUtilities/ref/MaximalIndependentVertexSet.html 年