WOLFRAM

MultivariateStatistics`
MultivariateStatistics`

MultivariateMedianDeviation

MultivariateMedianDeviation[matrix]

gives the median Euclidean distance from the median of the elements in matrix.

Details and Options

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

Multivariate median deviation for bivariate data:

Out[2]=2

Options  (1)Common values & functionality for each option

MedianMethod  (1)

Multivariate median deviation using a simplex median:

Out[2]=2
Wolfram Research (2007), MultivariateMedianDeviation, Wolfram Language function, https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html.
Wolfram Research (2007), MultivariateMedianDeviation, Wolfram Language function, https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html.

Text

Wolfram Research (2007), MultivariateMedianDeviation, Wolfram Language function, https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html.

Wolfram Research (2007), MultivariateMedianDeviation, Wolfram Language function, https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html.

CMS

Wolfram Language. 2007. "MultivariateMedianDeviation." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html.

Wolfram Language. 2007. "MultivariateMedianDeviation." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html.

APA

Wolfram Language. (2007). MultivariateMedianDeviation. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html

Wolfram Language. (2007). MultivariateMedianDeviation. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html

BibTeX

@misc{reference.wolfram_2025_multivariatemediandeviation, author="Wolfram Research", title="{MultivariateMedianDeviation}", year="2007", howpublished="\url{https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html}", note=[Accessed: 04-April-2025 ]}

@misc{reference.wolfram_2025_multivariatemediandeviation, author="Wolfram Research", title="{MultivariateMedianDeviation}", year="2007", howpublished="\url{https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html}", note=[Accessed: 04-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_multivariatemediandeviation, organization={Wolfram Research}, title={MultivariateMedianDeviation}, year={2007}, url={https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html}, note=[Accessed: 04-April-2025 ]}

@online{reference.wolfram_2025_multivariatemediandeviation, organization={Wolfram Research}, title={MultivariateMedianDeviation}, year={2007}, url={https://reference.wolfram.com/language/MultivariateStatistics/ref/MultivariateMedianDeviation.html}, note=[Accessed: 04-April-2025 ]}