Tabular Modeling

Models of data range from simple summarization to detailed distribution characterization to regression models for prediction and classification. The model artifacts are typically used for insight to explain data or to answer questions in place of data.  The Wolfram Language has a rich repertoire of modeling capabilities that can be easily used directly with tabular data.

Summary Statistics »

Mean find the mean of numbers, dates, etc.

StandardDeviation  ▪  Median  ▪  Quartiles  ▪  ...

Distribution Modeling »

SmoothKernelDistribution fit a nonparametric distribution

FindDistribution fit a parametric distribution

EstimatedDistribution  ▪  HistogramDistribution  ▪  KernelMixtureDistribution  ▪  DistributionFitTest  ▪  ...

Regression Modeling »

LinearModelFit fit column data using values from the other columns

GeneralizedLinearModelFit  ▪  NonlinearModelFit  ▪  ...

Machine Learning »

Predict, Classify predict a numerical or categorical value from a row

NetTrain train a neural net on tabular data

FindClusters  ▪  ClusteringComponents  ▪  ClusterClassify

Survival Modeling »

SurvivalModelFit create a survival model from event times ...

CoxModelFit  ▪  EventData  ▪  LogRankTest  ▪  ...