AlgebraicNumberDenominator
✖
AlgebraicNumberDenominator
gives the smallest positive integer n such that n a is an algebraic integer.
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Scope (3)Survey of the scope of standard use cases

https://wolfram.com/xid/0tqfdc4pygxfvi-srk352


https://wolfram.com/xid/0tqfdc4pygxfvi-5v0sw1

Root and AlgebraicNumber objects:

https://wolfram.com/xid/0tqfdc4pygxfvi-cexgl


https://wolfram.com/xid/0tqfdc4pygxfvi-gs8aug

AlgebraicNumberDenominator automatically threads over lists:

https://wolfram.com/xid/0tqfdc4pygxfvi-ra3v5n

Applications (1)Sample problems that can be solved with this function
Properties & Relations (2)Properties of the function, and connections to other functions
For an algebraic integer n, the denominator is 1:

https://wolfram.com/xid/0tqfdc4pygxfvi-wy56xz

Multiplying an algebraic number by its denominator gives an algebraic integer:

https://wolfram.com/xid/0tqfdc4pygxfvi-bvtlvj

https://wolfram.com/xid/0tqfdc4pygxfvi-mxn1ve


https://wolfram.com/xid/0tqfdc4pygxfvi-x9oa5

Wolfram Research (2007), AlgebraicNumberDenominator, Wolfram Language function, https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html.
Text
Wolfram Research (2007), AlgebraicNumberDenominator, Wolfram Language function, https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html.
Wolfram Research (2007), AlgebraicNumberDenominator, Wolfram Language function, https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html.
CMS
Wolfram Language. 2007. "AlgebraicNumberDenominator." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html.
Wolfram Language. 2007. "AlgebraicNumberDenominator." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html.
APA
Wolfram Language. (2007). AlgebraicNumberDenominator. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html
Wolfram Language. (2007). AlgebraicNumberDenominator. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html
BibTeX
@misc{reference.wolfram_2025_algebraicnumberdenominator, author="Wolfram Research", title="{AlgebraicNumberDenominator}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html}", note=[Accessed: 16-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_algebraicnumberdenominator, organization={Wolfram Research}, title={AlgebraicNumberDenominator}, year={2007}, url={https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html}, note=[Accessed: 16-May-2025
]}