# AlgebraicNumberDenominator

AlgebraicNumberDenominator[a]

gives the smallest positive integer n such that n a is an algebraic integer.

# Examples

open allclose all

## Scope(3)

Root and AlgebraicNumber objects:

## Applications(1)

Representation of 1/(1+) as a quotient α/n of an algebraic integer α and an integer n:

## Properties & Relations(2)

For an algebraic integer n, the denominator is 1:

Multiplying an algebraic number by its denominator gives an algebraic integer:

## Possible Issues(1)

The argument must be an algebraic number:

Wolfram Research (2007), AlgebraicNumberDenominator, Wolfram Language function, https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html.

#### Text

Wolfram Research (2007), AlgebraicNumberDenominator, Wolfram Language function, https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html.

#### CMS

Wolfram Language. 2007. "AlgebraicNumberDenominator." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html.

#### APA

Wolfram Language. (2007). AlgebraicNumberDenominator. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html

#### BibTeX

@misc{reference.wolfram_2024_algebraicnumberdenominator, author="Wolfram Research", title="{AlgebraicNumberDenominator}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html}", note=[Accessed: 23-April-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_algebraicnumberdenominator, organization={Wolfram Research}, title={AlgebraicNumberDenominator}, year={2007}, url={https://reference.wolfram.com/language/ref/AlgebraicNumberDenominator.html}, note=[Accessed: 23-April-2024 ]}