BinnedVariogramList
✖
BinnedVariogramList
Details and Options




- BinnedVariogramList is also known as empirical variogram or sample variogram.
- BinnedVariogramList is typically used to get an initial assessment of the spatial data dependence in data. It is also used as a first stage in estimating high-quality EstimatedVariogramModel.
- The variogram
for a spatial process
at locations
and
is given by
. It is a measure of how quickly the process varies spatially.
- When a process is weakly stationary, then the variogram depends only the difference of locations, i.e.
. And when the process is isotropic, it only depends on the distance between locations
where
.
- The value of
for
is computed as
, where
. The result is a binned variogram:
- The resulting binned variogram is typically not a valid variogram. It needs to be conditionally negative definite
for all weights wi such that
and locations pi. However, it can be used to fit a variogram model that will be a valid variogram, as is done in EstimatedVariogramModel.
- From the binned variogram, one can detect whether there is a trend in the data, which will result in an unbounded variogram.
- The following options can be given:
-
DistanceFunction Automatic specify the function to compute distance Method "NonLattice" specify the shape of the locations for binning SpatialTrendFunction None specify the global trend model - The following settings can be used for Method:
-
"NonLattice" locations are given as a collection - The following Method options can be used:
-
"BinCenter" "Centroid" how to compute bin centers "MaxDistanceRatio" 1/3 data pairs for which the ratio of their distance to the max pair distance is greater are dropped "MinPairs" 30 bins containing fewer pairs are dropped "ScaleEstimator" "Cressie" which scale estimator to use - The following settings can be used for "ScaleEstimator":
-
"Cressie" use the fourth moment of square root "Matheron" use the second moment "Qn" use QnDispersion "Sn" use SnDispersion - BinnedVariogram returns two-dimensional WeightedData, with weights being the number of pairs for each distance bin.




Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Compute BinnedVariogramList from data:

https://wolfram.com/xid/0dbk58a0yb8dqducai-kzrafo

https://wolfram.com/xid/0dbk58a0yb8dqducai-2wu3l0


https://wolfram.com/xid/0dbk58a0yb8dqducai-42710s


https://wolfram.com/xid/0dbk58a0yb8dqducai-k30hr9

Compute BinnedVariogramList from geo data:

https://wolfram.com/xid/0dbk58a0yb8dqducai-n28g7w


https://wolfram.com/xid/0dbk58a0yb8dqducai-6nnfof

Specify values via annotation key:

https://wolfram.com/xid/0dbk58a0yb8dqducai-njr5ys


https://wolfram.com/xid/0dbk58a0yb8dqducai-b6spmm

Scope (3)Survey of the scope of standard use cases
Basic Uses (3)
Compute the binned variogram for random locations:

https://wolfram.com/xid/0dbk58a0yb8dqducai-ygctlt

https://wolfram.com/xid/0dbk58a0yb8dqducai-e4om3q


https://wolfram.com/xid/0dbk58a0yb8dqducai-zwssuw

Visualize the binned variogram with weights being the number of pairs for each distance bin:

https://wolfram.com/xid/0dbk58a0yb8dqducai-q6m0c1

Use HistogramList specs for binning:

https://wolfram.com/xid/0dbk58a0yb8dqducai-rtchvv

https://wolfram.com/xid/0dbk58a0yb8dqducai-d652ab

Compute binned variogram with Automatic bin specification:

https://wolfram.com/xid/0dbk58a0yb8dqducai-1bg6xn

https://wolfram.com/xid/0dbk58a0yb8dqducai-qnewlo

https://wolfram.com/xid/0dbk58a0yb8dqducai-xgzc86
Use a named binning method (Scott is default):

https://wolfram.com/xid/0dbk58a0yb8dqducai-whu5ai

https://wolfram.com/xid/0dbk58a0yb8dqducai-51f4g5

Compute BinnedVariogramList for geographical data:

https://wolfram.com/xid/0dbk58a0yb8dqducai-5256rf

https://wolfram.com/xid/0dbk58a0yb8dqducai-6y0v91

https://wolfram.com/xid/0dbk58a0yb8dqducai-f7f4pn


https://wolfram.com/xid/0dbk58a0yb8dqducai-lox6sw


https://wolfram.com/xid/0dbk58a0yb8dqducai-uckt2d

Options (7)Common values & functionality for each option
DistanceFunction (1)
For non-geographical locations, different DistanceFunction can be used:

https://wolfram.com/xid/0dbk58a0yb8dqducai-5udbai

https://wolfram.com/xid/0dbk58a0yb8dqducai-fzvmxc

EuclideanDistance is the default distance function for Cartesian coordinates:

https://wolfram.com/xid/0dbk58a0yb8dqducai-kgb35g


https://wolfram.com/xid/0dbk58a0yb8dqducai-cainfi


https://wolfram.com/xid/0dbk58a0yb8dqducai-1xhjxh

Method (5)
Method (1)
BinCenter (1)
Compute BinnedVariogramList for various "BinCenter" specifications:

https://wolfram.com/xid/0dbk58a0yb8dqducai-h3hbh6

https://wolfram.com/xid/0dbk58a0yb8dqducai-ocy4r6


https://wolfram.com/xid/0dbk58a0yb8dqducai-ghygb2

https://wolfram.com/xid/0dbk58a0yb8dqducai-iatwtq


https://wolfram.com/xid/0dbk58a0yb8dqducai-36x1j8

MaxDistanceRatio (1)
Compute BinnedVariogramList for various "MaxDistanceRatio" specifications:

https://wolfram.com/xid/0dbk58a0yb8dqducai-szk7ex

https://wolfram.com/xid/0dbk58a0yb8dqducai-1n3829

Specify "MaxDistanceRatio" settings:

https://wolfram.com/xid/0dbk58a0yb8dqducai-60jff

https://wolfram.com/xid/0dbk58a0yb8dqducai-in0v2n


https://wolfram.com/xid/0dbk58a0yb8dqducai-83igi8

MinPairs (1)
Compute BinnedVariogramList for various "MinPairs" specifications:

https://wolfram.com/xid/0dbk58a0yb8dqducai-x8i69i

https://wolfram.com/xid/0dbk58a0yb8dqducai-r1jwuc


https://wolfram.com/xid/0dbk58a0yb8dqducai-m0tyn3

https://wolfram.com/xid/0dbk58a0yb8dqducai-z7xrmc


https://wolfram.com/xid/0dbk58a0yb8dqducai-dh6dbz

ScaleEstimator (1)
Compute BinnedVariogramList for various "ScaleEstimator" specifications:

https://wolfram.com/xid/0dbk58a0yb8dqducai-wh2n1e

https://wolfram.com/xid/0dbk58a0yb8dqducai-qe6va7

Specify "ScaleEstimator" settings:

https://wolfram.com/xid/0dbk58a0yb8dqducai-0njujv

https://wolfram.com/xid/0dbk58a0yb8dqducai-gagxel


https://wolfram.com/xid/0dbk58a0yb8dqducai-20r1nc

SpatialTrendFunction (1)
By default, BinnedVariogramList assumes no trend, but the data can be automatically detrended:

https://wolfram.com/xid/0dbk58a0yb8dqducai-cj3fud

https://wolfram.com/xid/0dbk58a0yb8dqducai-xl8hkl

Specify trend settings using SpatialTrendFunction and compute binned variogram:

https://wolfram.com/xid/0dbk58a0yb8dqducai-4ongt6

The plot shows that data has a trend of at least first order:

https://wolfram.com/xid/0dbk58a0yb8dqducai-nv1tqm

Applications (2)Sample problems that can be solved with this function
Binned variogram can be used to get initial visual shape idea for EstimatedVariogramModel:

https://wolfram.com/xid/0dbk58a0yb8dqducai-bhwow0

Compute binned variogram for values specified by the annotation key:

https://wolfram.com/xid/0dbk58a0yb8dqducai-162664


https://wolfram.com/xid/0dbk58a0yb8dqducai-82vfii

Fit a few models with slow initial variation:

https://wolfram.com/xid/0dbk58a0yb8dqducai-6xlag2

https://wolfram.com/xid/0dbk58a0yb8dqducai-kn5g8c

https://wolfram.com/xid/0dbk58a0yb8dqducai-0q6xl

BinnedVariogramList can be used to indicate the presence of trend in the data:

https://wolfram.com/xid/0dbk58a0yb8dqducai-o3tkam

https://wolfram.com/xid/0dbk58a0yb8dqducai-rdzywb

Compute binned variogram with no trend specification:

https://wolfram.com/xid/0dbk58a0yb8dqducai-z7c1dd

The plot shows that data has a trend:

https://wolfram.com/xid/0dbk58a0yb8dqducai-b0p83y

Compute binned variogram with linear trend:

https://wolfram.com/xid/0dbk58a0yb8dqducai-on72xc

Compare the linearly detrended binned variogram with the default:

https://wolfram.com/xid/0dbk58a0yb8dqducai-ikk7ya

Possible Issues (1)Common pitfalls and unexpected behavior
BinnedVariogramList will fail if there is not enough data to meet the minimum number of pairs per bin requirement:

https://wolfram.com/xid/0dbk58a0yb8dqducai-tmbe81

https://wolfram.com/xid/0dbk58a0yb8dqducai-z1bxqr


Wolfram Research (2021), BinnedVariogramList, Wolfram Language function, https://reference.wolfram.com/language/ref/BinnedVariogramList.html.
Text
Wolfram Research (2021), BinnedVariogramList, Wolfram Language function, https://reference.wolfram.com/language/ref/BinnedVariogramList.html.
Wolfram Research (2021), BinnedVariogramList, Wolfram Language function, https://reference.wolfram.com/language/ref/BinnedVariogramList.html.
CMS
Wolfram Language. 2021. "BinnedVariogramList." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BinnedVariogramList.html.
Wolfram Language. 2021. "BinnedVariogramList." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BinnedVariogramList.html.
APA
Wolfram Language. (2021). BinnedVariogramList. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BinnedVariogramList.html
Wolfram Language. (2021). BinnedVariogramList. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BinnedVariogramList.html
BibTeX
@misc{reference.wolfram_2025_binnedvariogramlist, author="Wolfram Research", title="{BinnedVariogramList}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/BinnedVariogramList.html}", note=[Accessed: 26-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_binnedvariogramlist, organization={Wolfram Research}, title={BinnedVariogramList}, year={2021}, url={https://reference.wolfram.com/language/ref/BinnedVariogramList.html}, note=[Accessed: 26-March-2025
]}