CircumscribedBall

CircumscribedBall[{p1,p2,}]

p1, p2, を包み込む半径が最小の球を与える.

詳細

  • CircumscribedBallは最小の包込み円としても知られている.
  • CircumscribedBallは,すべての点 piを含む測度(円弧,長さ,面積等)が最小のBallを与える.

例題

すべて開くすべて閉じる

  (2)

点からの2D外接球:

この領域は点を包み込む最小の球体である:

点からの3D外接球:

この領域は点を包み込む最小の球体である:

スコープ  (1)

  (1)

点の集合から1D外接球を作成する:

2D外接球:

3D外接球:

特性と関係  (3)

CircumscribedBallは点を包み込む最小のBallである:

InscribedBallを使って点の凸包内にある最大のBallを得る:

Circumsphereを使ってを点に外接するSphere得る:

Wolfram Research (2023), CircumscribedBall, Wolfram言語関数, https://reference.wolfram.com/language/ref/CircumscribedBall.html.

テキスト

Wolfram Research (2023), CircumscribedBall, Wolfram言語関数, https://reference.wolfram.com/language/ref/CircumscribedBall.html.

CMS

Wolfram Language. 2023. "CircumscribedBall." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CircumscribedBall.html.

APA

Wolfram Language. (2023). CircumscribedBall. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CircumscribedBall.html

BibTeX

@misc{reference.wolfram_2024_circumscribedball, author="Wolfram Research", title="{CircumscribedBall}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/CircumscribedBall.html}", note=[Accessed: 18-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_circumscribedball, organization={Wolfram Research}, title={CircumscribedBall}, year={2023}, url={https://reference.wolfram.com/language/ref/CircumscribedBall.html}, note=[Accessed: 18-November-2024 ]}