Insphere
✖
Insphere
Details

- Insphere is also known as incircle, inscribed circle, or inscribed disk.
- Insphere gives the Sphere of largest measure (arc length, area, etc.) that can be inscribed in the simplex (triangle, tetrahedron, etc.) defined by points pi.
- Insphere evaluates to a Sphere[c,r], where the center c is known as the incenter and radius r is known as the inradius for the related simplex.
- Insphere is defined for
and affinely independent.
- For polyhedra, Insphere[poly] returns a sphere that is contained within the polyhedron poly and tangent to each of the polyhedron faces.
- For polygons, Insphere[poly] returns a sphere that is contained within the polygon poly and tangent to each of the polygon edges.
- Insphere can be used with symbolic points in GeometricScene.

Examples
open allclose allBasic Examples (2)Summary of the most common use cases

https://wolfram.com/xid/0d6gh876r6-fz03yw


https://wolfram.com/xid/0d6gh876r6-tld766

The insphere of the regular octahedron:

https://wolfram.com/xid/0d6gh876r6-nw12dx


https://wolfram.com/xid/0d6gh876r6-g341iw


https://wolfram.com/xid/0d6gh876r6-36b300

Scope (17)Survey of the scope of standard use cases
Graphics (6)
Specification (2)
Inspheres in different dimensions:

https://wolfram.com/xid/0d6gh876r6-wntg1a


https://wolfram.com/xid/0d6gh876r6-zr7ghg

Insphere evaluates to a Sphere:

https://wolfram.com/xid/0d6gh876r6-do6gu6


https://wolfram.com/xid/0d6gh876r6-e7tdeq

Styling (4)

https://wolfram.com/xid/0d6gh876r6-n62odp

https://wolfram.com/xid/0d6gh876r6-5h7y6f

Different properties can be specified for the front and back of faces using FaceForm:

https://wolfram.com/xid/0d6gh876r6-qlfjpq

https://wolfram.com/xid/0d6gh876r6-gokgh8

Inspheres with different specular exponents:

https://wolfram.com/xid/0d6gh876r6-21ednz

https://wolfram.com/xid/0d6gh876r6-8n1xyu

Black circumsphere that glows red:

https://wolfram.com/xid/0d6gh876r6-tdbv9f

Opacity specifies the face opacity:

https://wolfram.com/xid/0d6gh876r6-7orfqj

https://wolfram.com/xid/0d6gh876r6-v6r7w7

Regions (11)
Insphere works in any number of dimensions:

https://wolfram.com/xid/0d6gh876r6-u933r

Get the circumcenter and circumradius:

https://wolfram.com/xid/0d6gh876r6-fekmm

Embedding dimension is the dimension of the space in which the sphere lives:

https://wolfram.com/xid/0d6gh876r6-eq5j78

https://wolfram.com/xid/0d6gh876r6-f2f0kz

Geometric dimension is the dimension of the shape itself:

https://wolfram.com/xid/0d6gh876r6-ca28v8


https://wolfram.com/xid/0d6gh876r6-uyn7nu

https://wolfram.com/xid/0d6gh876r6-tg4hq

Get conditions for membership:

https://wolfram.com/xid/0d6gh876r6-9ge5ph


https://wolfram.com/xid/0d6gh876r6-se0twe

https://wolfram.com/xid/0d6gh876r6-e06l44


https://wolfram.com/xid/0d6gh876r6-gwq4b4


https://wolfram.com/xid/0d6gh876r6-oknxhk


https://wolfram.com/xid/0d6gh876r6-8t82nc

https://wolfram.com/xid/0d6gh876r6-yy0poa


https://wolfram.com/xid/0d6gh876r6-bxuxrk


https://wolfram.com/xid/0d6gh876r6-lpnyc3

https://wolfram.com/xid/0d6gh876r6-q2k9sm


https://wolfram.com/xid/0d6gh876r6-f514j9


https://wolfram.com/xid/0d6gh876r6-btejnv


https://wolfram.com/xid/0d6gh876r6-et4yza

Nearest points to an enclosing sphere:

https://wolfram.com/xid/0d6gh876r6-fccj33

https://wolfram.com/xid/0d6gh876r6-m59d3a

https://wolfram.com/xid/0d6gh876r6-g70sch


https://wolfram.com/xid/0d6gh876r6-kpktle

https://wolfram.com/xid/0d6gh876r6-wy4vq0


https://wolfram.com/xid/0d6gh876r6-vr4sfb


https://wolfram.com/xid/0d6gh876r6-z4q5c


https://wolfram.com/xid/0d6gh876r6-izew4u

https://wolfram.com/xid/0d6gh876r6-xs2ioc


https://wolfram.com/xid/0d6gh876r6-sl101w


https://wolfram.com/xid/0d6gh876r6-5qhh0w

https://wolfram.com/xid/0d6gh876r6-31c9br

Solve equations over an Insphere:

https://wolfram.com/xid/0d6gh876r6-i0dix4

https://wolfram.com/xid/0d6gh876r6-70rdaw

Applications (3)Sample problems that can be solved with this function
Recursively construct inscribed triangles and disks:

https://wolfram.com/xid/0d6gh876r6-umomr3

https://wolfram.com/xid/0d6gh876r6-5b5xxm

https://wolfram.com/xid/0d6gh876r6-b9gako

https://wolfram.com/xid/0d6gh876r6-cfvtlb

Use Insphere to generate a circle packing for a triangulated region. First triangulate the region:

https://wolfram.com/xid/0d6gh876r6-84njj

Use Insphere to compute a circle for each triangle:

https://wolfram.com/xid/0d6gh876r6-mtktm

https://wolfram.com/xid/0d6gh876r6-buhkmy


https://wolfram.com/xid/0d6gh876r6-dz7d5y


https://wolfram.com/xid/0d6gh876r6-eq582


https://wolfram.com/xid/0d6gh876r6-cpl3qf

Use Insphere to generate a sphere packing for a triangulated region. First discretize and triangulate the region:

https://wolfram.com/xid/0d6gh876r6-ul7xd

Use Insphere to compute spheres for each tetrahedron:

https://wolfram.com/xid/0d6gh876r6-gvmsw

https://wolfram.com/xid/0d6gh876r6-dv8hkw


https://wolfram.com/xid/0d6gh876r6-bk32o2


https://wolfram.com/xid/0d6gh876r6-jozy


https://wolfram.com/xid/0d6gh876r6-jnid5

Properties & Relations (2)Properties of the function, and connections to other functions
Insphere is the largest Sphere that can be inscribed in a Simplex:

https://wolfram.com/xid/0d6gh876r6-k265g7

https://wolfram.com/xid/0d6gh876r6-tg9ijn


https://wolfram.com/xid/0d6gh876r6-3ftiwq

https://wolfram.com/xid/0d6gh876r6-pwi1ou

Use Circumsphere to get a Sphere (blue) that circumscribes a Simplex:

https://wolfram.com/xid/0d6gh876r6-gp2exh

https://wolfram.com/xid/0d6gh876r6-3w20tp


https://wolfram.com/xid/0d6gh876r6-ud8x8p

https://wolfram.com/xid/0d6gh876r6-zdbjwv

Wolfram Research (2015), Insphere, Wolfram Language function, https://reference.wolfram.com/language/ref/Insphere.html (updated 2019).
Text
Wolfram Research (2015), Insphere, Wolfram Language function, https://reference.wolfram.com/language/ref/Insphere.html (updated 2019).
Wolfram Research (2015), Insphere, Wolfram Language function, https://reference.wolfram.com/language/ref/Insphere.html (updated 2019).
CMS
Wolfram Language. 2015. "Insphere." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2019. https://reference.wolfram.com/language/ref/Insphere.html.
Wolfram Language. 2015. "Insphere." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2019. https://reference.wolfram.com/language/ref/Insphere.html.
APA
Wolfram Language. (2015). Insphere. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Insphere.html
Wolfram Language. (2015). Insphere. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Insphere.html
BibTeX
@misc{reference.wolfram_2025_insphere, author="Wolfram Research", title="{Insphere}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/Insphere.html}", note=[Accessed: 21-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_insphere, organization={Wolfram Research}, title={Insphere}, year={2019}, url={https://reference.wolfram.com/language/ref/Insphere.html}, note=[Accessed: 21-May-2025
]}