CombinatorC

CombinatorC

represents the TemplateBox[{}, CombinatorC] combinator.

Details

Examples

open allclose all

Basic Examples  (1)

Apply the standard reduction rules of combinatory logic:

Properties & Relations  (1)

The TemplateBox[{}, CombinatorC] combinator can be expressed in terms of TemplateBox[{}, CombinatorS] and TemplateBox[{}, CombinatorK] as TemplateBox[{}, CombinatorS](TemplateBox[{}, CombinatorS](TemplateBox[{}, CombinatorK]TemplateBox[{}, CombinatorS])(TemplateBox[{}, CombinatorS](TemplateBox[{}, CombinatorK]TemplateBox[{}, CombinatorK])TemplateBox[{}, CombinatorS]))(TemplateBox[{}, CombinatorK]TemplateBox[{}, CombinatorK]):

Wolfram Research (2020), CombinatorC, Wolfram Language function, https://reference.wolfram.com/language/ref/CombinatorC.html.

Text

Wolfram Research (2020), CombinatorC, Wolfram Language function, https://reference.wolfram.com/language/ref/CombinatorC.html.

CMS

Wolfram Language. 2020. "CombinatorC." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CombinatorC.html.

APA

Wolfram Language. (2020). CombinatorC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CombinatorC.html

BibTeX

@misc{reference.wolfram_2024_combinatorc, author="Wolfram Research", title="{CombinatorC}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/CombinatorC.html}", note=[Accessed: 21-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_combinatorc, organization={Wolfram Research}, title={CombinatorC}, year={2020}, url={https://reference.wolfram.com/language/ref/CombinatorC.html}, note=[Accessed: 21-December-2024 ]}