ConvexPolyhedronQ

ConvexPolyhedronQ[poly]

如果 poly 是凸多面体给出 True,否则给出 False.

更多信息

  • 如果两点之间的线段不在多面体之外,则多面体是凸多面体.

范例

打开所有单元关闭所有单元

基本范例  (2)

测试一个多面体是否是凸多面体:

对于非凸多面体,ConvexPolyhedronQ 给出 False

范围  (3)

ConvexPolyhedronQ 适用于多面体:

Cube

Dodecahedron

Tetrahedron

有洞的多面体:

有不相连组件的多面体:

属性和关系  (3)

凸多面体是简单多面体:

凸多面体的 OuterPolyhedron 还是凸多面体:

凸多面体没有洞:

UniformPolyhedron 是凸多面体:

可能存在的问题  (1)

对于非恒定多面体,ConvexPolyhedronQ 返回 False

Wolfram Research (2019),ConvexPolyhedronQ,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ConvexPolyhedronQ.html.

文本

Wolfram Research (2019),ConvexPolyhedronQ,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ConvexPolyhedronQ.html.

CMS

Wolfram 语言. 2019. "ConvexPolyhedronQ." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/ConvexPolyhedronQ.html.

APA

Wolfram 语言. (2019). ConvexPolyhedronQ. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/ConvexPolyhedronQ.html 年

BibTeX

@misc{reference.wolfram_2024_convexpolyhedronq, author="Wolfram Research", title="{ConvexPolyhedronQ}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/ConvexPolyhedronQ.html}", note=[Accessed: 22-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_convexpolyhedronq, organization={Wolfram Research}, title={ConvexPolyhedronQ}, year={2019}, url={https://reference.wolfram.com/language/ref/ConvexPolyhedronQ.html}, note=[Accessed: 22-November-2024 ]}