Tetrahedron
✖
Tetrahedron
represents a tetrahedron rotated by an angle θ with respect to the z axis and angle ϕ with respect to the y axis.
represents a general filled tetrahedron with corners p1, p2, p3 and p4.
Details and Options

- Tetrahedron is also known as regular tetrahedron or triangular pyramid.
- Tetrahedron can be used as a geometric region and as a graphics primitive.
- Tetrahedron[] is equivalent to Tetrahedron[{0,0,0},1].
- Tetrahedron[l] is equivalent to Tetrahedron[{0,0,0},l].
- Tetrahedron[{p1,p2,p3,p4}] represents the region consisting of all the convex combinations of corner points pi,
.
- CanonicalizePolyhedron can be used to convert a tetrahedron to an explicit Polyhedron object.
- Tetrahedron can be used in Graphics3D.
- In graphics, the points and edge lengths can be Scaled and Dynamic expressions.
- Graphics rendering is affected by directives such as FaceForm, EdgeForm, Opacity, Texture, and color.
- The following options and settings can be used in graphics:
-
VertexColors Automatic vertex colors to be interpolated VertexNormals Automatic effective vertex normals for shading VertexTextureCoordinates None coordinates for textures

Examples
open allclose allBasic Examples (3)Summary of the most common use cases

https://wolfram.com/xid/08uo1wtnxcxsnhu-hovl9


https://wolfram.com/xid/08uo1wtnxcxsnhu-ii9xg7

https://wolfram.com/xid/08uo1wtnxcxsnhu-84fmk


https://wolfram.com/xid/08uo1wtnxcxsnhu-ia7t48

https://wolfram.com/xid/08uo1wtnxcxsnhu-t6dwl


https://wolfram.com/xid/08uo1wtnxcxsnhu-bgi1zx

Scope (19)Survey of the scope of standard use cases
Graphics (9)
Specification (3)

https://wolfram.com/xid/08uo1wtnxcxsnhu-jmbqy5


https://wolfram.com/xid/08uo1wtnxcxsnhu-ggb1ww


https://wolfram.com/xid/08uo1wtnxcxsnhu-1c6641

https://wolfram.com/xid/08uo1wtnxcxsnhu-ppozsb

Styling (3)
FaceForm and EdgeForm can be used to specify the styles of the faces and edges:

https://wolfram.com/xid/08uo1wtnxcxsnhu-38df6s

https://wolfram.com/xid/08uo1wtnxcxsnhu-78t7nc

Apply a Texture to the faces:

https://wolfram.com/xid/08uo1wtnxcxsnhu-vff8kd

https://wolfram.com/xid/08uo1wtnxcxsnhu-5tt6t

Assign VertexColors to vertices:

https://wolfram.com/xid/08uo1wtnxcxsnhu-le5wxu

Coordinates (3)
Specify coordinates by fractions of the plot range:

https://wolfram.com/xid/08uo1wtnxcxsnhu-u8d4ip

Specify scaled offsets from the ordinary coordinates:

https://wolfram.com/xid/08uo1wtnxcxsnhu-6qq3xm

Points can be Dynamic:

https://wolfram.com/xid/08uo1wtnxcxsnhu-6gl1zz

Regions (10)
Embedding dimension is the dimension of the space in which the tetrahedron lives:

https://wolfram.com/xid/08uo1wtnxcxsnhu-eq5j78

https://wolfram.com/xid/08uo1wtnxcxsnhu-f2f0kz

Geometric dimension is the dimension of the shape itself:

https://wolfram.com/xid/08uo1wtnxcxsnhu-ca28v8


https://wolfram.com/xid/08uo1wtnxcxsnhu-ghs1r

https://wolfram.com/xid/08uo1wtnxcxsnhu-tg4hq

Get conditions for membership:

https://wolfram.com/xid/08uo1wtnxcxsnhu-9ge5ph


https://wolfram.com/xid/08uo1wtnxcxsnhu-se0twe

https://wolfram.com/xid/08uo1wtnxcxsnhu-e06l44


https://wolfram.com/xid/08uo1wtnxcxsnhu-gwq4b4


https://wolfram.com/xid/08uo1wtnxcxsnhu-oknxhk


https://wolfram.com/xid/08uo1wtnxcxsnhu-oc6hy

https://wolfram.com/xid/08uo1wtnxcxsnhu-bruj1e

The equidistance contours for a tetrahedron:

https://wolfram.com/xid/08uo1wtnxcxsnhu-jdsxbg


https://wolfram.com/xid/08uo1wtnxcxsnhu-cybvpc

https://wolfram.com/xid/08uo1wtnxcxsnhu-bm4ed


https://wolfram.com/xid/08uo1wtnxcxsnhu-btejnv

https://wolfram.com/xid/08uo1wtnxcxsnhu-et4yza

Nearest points to an enclosing sphere:

https://wolfram.com/xid/08uo1wtnxcxsnhu-fccj33

https://wolfram.com/xid/08uo1wtnxcxsnhu-m59d3a

https://wolfram.com/xid/08uo1wtnxcxsnhu-g70sch


https://wolfram.com/xid/08uo1wtnxcxsnhu-dym4fu

https://wolfram.com/xid/08uo1wtnxcxsnhu-i3tfrr


https://wolfram.com/xid/08uo1wtnxcxsnhu-l3exhn


https://wolfram.com/xid/08uo1wtnxcxsnhu-bx1r15

Integrate over a tetrahedron region:

https://wolfram.com/xid/08uo1wtnxcxsnhu-k224q2

https://wolfram.com/xid/08uo1wtnxcxsnhu-banwkr

Optimize over a tetrahedron region:

https://wolfram.com/xid/08uo1wtnxcxsnhu-nf9ton

https://wolfram.com/xid/08uo1wtnxcxsnhu-hyz4dq

Solve equations in a tetrahedron region:

https://wolfram.com/xid/08uo1wtnxcxsnhu-bximqe

https://wolfram.com/xid/08uo1wtnxcxsnhu-cn6ygq

Applications (5)Sample problems that can be solved with this function
The standard tetrahedron is given by points :

https://wolfram.com/xid/08uo1wtnxcxsnhu-mp1io

A Kuhn tetrahedron is given by points :

https://wolfram.com/xid/08uo1wtnxcxsnhu-i13vsi

Define a regular tetrahedron by a radius from its center to a corner:

https://wolfram.com/xid/08uo1wtnxcxsnhu-cm9tq9

https://wolfram.com/xid/08uo1wtnxcxsnhu-724d32


https://wolfram.com/xid/08uo1wtnxcxsnhu-w890ej

Create a compound of two regular tetrahedra:

https://wolfram.com/xid/08uo1wtnxcxsnhu-ztnf2

https://wolfram.com/xid/08uo1wtnxcxsnhu-e375n7

https://wolfram.com/xid/08uo1wtnxcxsnhu-y48i81

If the four faces of a tetrahedron have the same area, then it is an isosceles tetrahedron:

https://wolfram.com/xid/08uo1wtnxcxsnhu-drujer

https://wolfram.com/xid/08uo1wtnxcxsnhu-x4rulk
Compare the area of each face:

https://wolfram.com/xid/08uo1wtnxcxsnhu-bfs82


https://wolfram.com/xid/08uo1wtnxcxsnhu-gcu34i

A tetrahedron can be subdivided into eight sub-tetrahedra:

https://wolfram.com/xid/08uo1wtnxcxsnhu-kclu1m

https://wolfram.com/xid/08uo1wtnxcxsnhu-bjkhbc


https://wolfram.com/xid/08uo1wtnxcxsnhu-iepen4

https://wolfram.com/xid/08uo1wtnxcxsnhu-bkylqv

Properties & Relations (8)Properties of the function, and connections to other functions
TriangulateMesh can be used to decompose a volume mesh into tetrahedra:

https://wolfram.com/xid/08uo1wtnxcxsnhu-8nmuqi


https://wolfram.com/xid/08uo1wtnxcxsnhu-06rw2h


https://wolfram.com/xid/08uo1wtnxcxsnhu-6fke8b

Use options such as MaxCellMeasure to control the number of tetrahedra:

https://wolfram.com/xid/08uo1wtnxcxsnhu-bousc5

A hexahedron can be represented as the union of five tetrahedra:

https://wolfram.com/xid/08uo1wtnxcxsnhu-u32usv

https://wolfram.com/xid/08uo1wtnxcxsnhu-h426c

Point index list of tetrahedra vertices:

https://wolfram.com/xid/08uo1wtnxcxsnhu-mtv2bj

https://wolfram.com/xid/08uo1wtnxcxsnhu-sos1yg

A hexahedron can also be represented as the union of six tetrahedra:

https://wolfram.com/xid/08uo1wtnxcxsnhu-jufwh0

https://wolfram.com/xid/08uo1wtnxcxsnhu-ehckv7

https://wolfram.com/xid/08uo1wtnxcxsnhu-cc9t05

Any tetrahedron is an affine transformation of the standard tetrahedron:

https://wolfram.com/xid/08uo1wtnxcxsnhu-bs4ml0
The transformation is given by , where
:

https://wolfram.com/xid/08uo1wtnxcxsnhu-d94h8v

https://wolfram.com/xid/08uo1wtnxcxsnhu-mqbtqm
Compare original and transformed unit tetrahedron:

https://wolfram.com/xid/08uo1wtnxcxsnhu-jwiq78

https://wolfram.com/xid/08uo1wtnxcxsnhu-jk2vlt

Tetrahedron is a special case of Simplex:

https://wolfram.com/xid/08uo1wtnxcxsnhu-i2yu0m

https://wolfram.com/xid/08uo1wtnxcxsnhu-xgjvwm

ImplicitRegion can represent any Tetrahedron region:

https://wolfram.com/xid/08uo1wtnxcxsnhu-hw5ae3

https://wolfram.com/xid/08uo1wtnxcxsnhu-q64t4f

Tetrahedron is the set of convex combinations of its vertices:

https://wolfram.com/xid/08uo1wtnxcxsnhu-geptbu

https://wolfram.com/xid/08uo1wtnxcxsnhu-k94lg5

Vertices of a Tetrahedron can be used to form an enclosing Circumsphere:

https://wolfram.com/xid/08uo1wtnxcxsnhu-lq6yxn

https://wolfram.com/xid/08uo1wtnxcxsnhu-uqdh6e

Wolfram Research (2014), Tetrahedron, Wolfram Language function, https://reference.wolfram.com/language/ref/Tetrahedron.html (updated 2019).
Text
Wolfram Research (2014), Tetrahedron, Wolfram Language function, https://reference.wolfram.com/language/ref/Tetrahedron.html (updated 2019).
Wolfram Research (2014), Tetrahedron, Wolfram Language function, https://reference.wolfram.com/language/ref/Tetrahedron.html (updated 2019).
CMS
Wolfram Language. 2014. "Tetrahedron." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2019. https://reference.wolfram.com/language/ref/Tetrahedron.html.
Wolfram Language. 2014. "Tetrahedron." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2019. https://reference.wolfram.com/language/ref/Tetrahedron.html.
APA
Wolfram Language. (2014). Tetrahedron. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Tetrahedron.html
Wolfram Language. (2014). Tetrahedron. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Tetrahedron.html
BibTeX
@misc{reference.wolfram_2025_tetrahedron, author="Wolfram Research", title="{Tetrahedron}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/Tetrahedron.html}", note=[Accessed: 04-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_tetrahedron, organization={Wolfram Research}, title={Tetrahedron}, year={2019}, url={https://reference.wolfram.com/language/ref/Tetrahedron.html}, note=[Accessed: 04-May-2025
]}