# DiracComb

DiracComb[x]

represents the Dirac comb function giving a delta function at every integer point.

DiracComb[x1,x2,]

represents the multidimensional Dirac comb function .

# Details

• DiracComb is also known as impulse train, sampling function, and shah.
• DiracComb[x] is equivalent to .
• DiracComb can be used in derivatives, integrals, integral transforms, and differential equations.
• DiracComb has attribute

# Examples

open allclose all

## Basic Examples(3)

DiracComb vanishes for noninteger arguments:

DiracComb stays unevaluated for integer x:

Plot over a subset of the reals:

The Fourier transform of DiracComb is a DiracComb:

## Scope(8)

### Numerical Evaluation(4)

Evaluate numerically:

DiracComb always returns an exact 0:

Evaluate efficiently at high precision:

### Function Properties(4)

Function domain of DiracComb:

It is restricted to real arguments:

DiracComb is an even function:

The multivariate DiracComb is a product of univariate ones:

Wolfram Research (2008), DiracComb, Wolfram Language function, https://reference.wolfram.com/language/ref/DiracComb.html.

#### Text

Wolfram Research (2008), DiracComb, Wolfram Language function, https://reference.wolfram.com/language/ref/DiracComb.html.

#### CMS

Wolfram Language. 2008. "DiracComb." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DiracComb.html.

#### APA

Wolfram Language. (2008). DiracComb. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DiracComb.html

#### BibTeX

@misc{reference.wolfram_2024_diraccomb, author="Wolfram Research", title="{DiracComb}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/DiracComb.html}", note=[Accessed: 14-June-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_diraccomb, organization={Wolfram Research}, title={DiracComb}, year={2008}, url={https://reference.wolfram.com/language/ref/DiracComb.html}, note=[Accessed: 14-June-2024 ]}