DirichletBeta

DirichletBeta[s]

gives the Dirichlet beta function .

Details

  • The Dirichlet beta function is also known as the Catalan beta function.
  • DirichletBeta is a mathematical function, suitable for both symbolic and numeric manipulation.
  • For , the Dirichlet beta function is defined as .
  • For certain special arguments, DirichletBeta automatically evaluates to exact values.
  • DirichletBeta is an entire function with branch cut discontinuities.
  • DirichletBeta can be evaluated to arbitrary numerical precision.
  • DirichletBeta automatically threads over lists.

Examples

open allclose all

Basic Examples  (4)

Plot on the real axis:

Visualize in the complex plane:

The Dirichlet beta function expands in terms of zeta functions:

Compute some special values:

Scope  (5)

DirichletBeta is neither non-decreasing nor non-increasing:

DirichletBeta is not injective:

DirichletBeta is neither non-negative nor non-positive:

DirichletBeta is neither convex nor concave:

Compute special values of derivatives:

Wolfram Research (2014), DirichletBeta, Wolfram Language function, https://reference.wolfram.com/language/ref/DirichletBeta.html.

Text

Wolfram Research (2014), DirichletBeta, Wolfram Language function, https://reference.wolfram.com/language/ref/DirichletBeta.html.

CMS

Wolfram Language. 2014. "DirichletBeta." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DirichletBeta.html.

APA

Wolfram Language. (2014). DirichletBeta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DirichletBeta.html

BibTeX

@misc{reference.wolfram_2022_dirichletbeta, author="Wolfram Research", title="{DirichletBeta}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/DirichletBeta.html}", note=[Accessed: 30-September-2022 ]}

BibLaTeX

@online{reference.wolfram_2022_dirichletbeta, organization={Wolfram Research}, title={DirichletBeta}, year={2014}, url={https://reference.wolfram.com/language/ref/DirichletBeta.html}, note=[Accessed: 30-September-2022 ]}