WOLFRAM

DistributionParameterAssumptions
DistributionParameterAssumptions

gives a logical expression for assumptions on parameters in the symbolic distribution dist.

Details

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

Obtain parameter assumptions for a normal distribution:

Out[1]=1

Parameter assumptions for a multinomial distribution:

Out[2]=2

Scope  (4)Survey of the scope of standard use cases

Obtain assumptions for distributions with combinations of numeric and symbolic parameters:

Out[3]=3

Get assumptions for univariate and multivariate discrete and continuous distributions:

Get assumptions for a derived distribution:

Out[2]=2

Data distributions have no parameters, so the assumptions are vacuously true:

Out[2]=2

Applications  (4)Sample problems that can be solved with this function

Get the PDF for an extreme value distribution:

Out[2]=2

Compute the integral for its mean without including parameter assumptions:

Out[3]=3

Use parameter assumptions to simplify the result:

Out[3]=3

Compute the result by giving the assumptions directly to Integrate:

Out[4]=4

Compare with the mean of the distribution:

Out[5]=5

Define two χ2 distributions and their parameter assumptions:

Compute the pdf of the sum of the χ2 distributed variables via convolution with assumptions:

Out[2]=2

Verify the additive property of χ2 variables:

Out[3]=3

Define a Haight distribution with probability parameter :

Sum the PDF expression to check normalization:

Out[2]=2

The result is not always unity if the distribution assumptions are not met:

Out[3]=3

Give assumptions to Sum to verify the total probability is 1 for assumed values of :

Out[4]=4

Get the assumptions for a type 1 Pearson with unknown b1 and b0 parameters:

Out[1]=1

Find the maximum possible value of b1 as a function of b0:

Out[2]=2
Out[3]=3

Properties & Relations  (1)Properties of the function, and connections to other functions

DistributionParameterAssumptions returns conditions on parameters:

Out[1]=1

DistributionParameterQ assumes symbolic parameters are valid:

Out[2]=2

With numeric parameters, the outputs are equivalent:

Out[3]=3
Out[4]=4
Wolfram Research (2010), DistributionParameterAssumptions, Wolfram Language function, https://reference.wolfram.com/language/ref/DistributionParameterAssumptions.html.
Wolfram Research (2010), DistributionParameterAssumptions, Wolfram Language function, https://reference.wolfram.com/language/ref/DistributionParameterAssumptions.html.

Text

Wolfram Research (2010), DistributionParameterAssumptions, Wolfram Language function, https://reference.wolfram.com/language/ref/DistributionParameterAssumptions.html.

Wolfram Research (2010), DistributionParameterAssumptions, Wolfram Language function, https://reference.wolfram.com/language/ref/DistributionParameterAssumptions.html.

CMS

Wolfram Language. 2010. "DistributionParameterAssumptions." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DistributionParameterAssumptions.html.

Wolfram Language. 2010. "DistributionParameterAssumptions." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DistributionParameterAssumptions.html.

APA

Wolfram Language. (2010). DistributionParameterAssumptions. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DistributionParameterAssumptions.html

Wolfram Language. (2010). DistributionParameterAssumptions. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DistributionParameterAssumptions.html

BibTeX

@misc{reference.wolfram_2025_distributionparameterassumptions, author="Wolfram Research", title="{DistributionParameterAssumptions}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/DistributionParameterAssumptions.html}", note=[Accessed: 02-May-2025 ]}

@misc{reference.wolfram_2025_distributionparameterassumptions, author="Wolfram Research", title="{DistributionParameterAssumptions}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/DistributionParameterAssumptions.html}", note=[Accessed: 02-May-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_distributionparameterassumptions, organization={Wolfram Research}, title={DistributionParameterAssumptions}, year={2010}, url={https://reference.wolfram.com/language/ref/DistributionParameterAssumptions.html}, note=[Accessed: 02-May-2025 ]}

@online{reference.wolfram_2025_distributionparameterassumptions, organization={Wolfram Research}, title={DistributionParameterAssumptions}, year={2010}, url={https://reference.wolfram.com/language/ref/DistributionParameterAssumptions.html}, note=[Accessed: 02-May-2025 ]}