EllipticThetaPrime

EllipticThetaPrime[a,u,q]

给出 theta 函数 TemplateBox[{a, u, q}, EllipticTheta] 关于 u 的导数.

EllipticThetaPrime[a,q]

给出 theta 常数 TemplateBox[{a, 0, q}, EllipticThetaPrime].

更多信息

范例

打开所有单元关闭所有单元

基本范例  (3)

数值计算:

在实数的子集上绘图:

在原点处关于 q 的级数展开式:

范围  (21)

数值计算  (4)

数值计算:

高精度计算:

输出的精度与输入的精度一致:

复数输入:

在高精度条件下进行高效计算:

特殊值  (3)

零处的值:

EllipticThetaPrime 符号式计算特殊参数:

求当 EllipticThetaPrime[3,x,1/2]=2 的值:

可视化  (2)

绘制各种参数值的 EllipticThetaPrime 函数:

绘制 TemplateBox[{4, z, {1, /, 3}}, EllipticThetaPrime] 的实部:

绘制 TemplateBox[{4, z, {1, /, 3}}, EllipticThetaPrime] 的虚部:

函数的属性  (10)

EllipticThetaPrime 的实数和复数定义域:

EllipticThetaPrime 是关于 的周期函数:

EllipticThetaPrime 逐项作用于列表的各个元素:

TemplateBox[{1, x, q}, EllipticThetaPrime]x 的解析函数:

例如,TemplateBox[{1, x, {1, /, 2}}, EllipticThetaPrime] 没有奇点或断点:

TemplateBox[{1, x, {1, /, 2}}, EllipticThetaPrime] 既不是非递增,也不是非递减:

TemplateBox[{1, x, {1, /, 2}}, EllipticThetaPrime] 不是单射函数:

TemplateBox[{1, x, {1, /, 2}}, EllipticThetaPrime] 不是满射函数:

TemplateBox[{1, x, {1, /, 2}}, EllipticThetaPrime] 既不是非负,也不是非正:

TemplateBox[{1, x, {1, /, 2}}, EllipticThetaPrime] 既不凸,也不凹:

TraditionalForm 格式:

积分  (2)

Integrate 计算不定积分:

验证反导数:

定积分:

推广和延伸  (1)

EllipticThetaPrime 可用于幂级数:

应用  (4)

通过数列展开验证 Jacobi 三重乘积恒等式( Jacobi's triple product identity):

具有 Dirichlet 边界条件和初始条件 的一维热方程的格林函数(Green's function):

计算温度梯度:

绘制温度梯度:

氯化钠晶体离子点间的静电力:

绘制穿过晶体平面作用力的大小:

线性分子学 的典型旋转分布函数:

绘制配分函数的近似数值:

可能存在的问题  (4)

机器精度输入不足以给出正确答案:

用任意精度算法获得正确结果:

第一自变量一定是 1 和 4 之间具体的整数:

EllipticThetaPrime 有属性 NHoldFirst

对于 theta 函数存在不同的参数约定:

巧妙范例  (1)

可视化显示解析的边界函数:

Wolfram Research (1996),EllipticThetaPrime,Wolfram 语言函数,https://reference.wolfram.com/language/ref/EllipticThetaPrime.html (更新于 2017 年).

文本

Wolfram Research (1996),EllipticThetaPrime,Wolfram 语言函数,https://reference.wolfram.com/language/ref/EllipticThetaPrime.html (更新于 2017 年).

CMS

Wolfram 语言. 1996. "EllipticThetaPrime." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2017. https://reference.wolfram.com/language/ref/EllipticThetaPrime.html.

APA

Wolfram 语言. (1996). EllipticThetaPrime. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/EllipticThetaPrime.html 年

BibTeX

@misc{reference.wolfram_2024_ellipticthetaprime, author="Wolfram Research", title="{EllipticThetaPrime}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/EllipticThetaPrime.html}", note=[Accessed: 22-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_ellipticthetaprime, organization={Wolfram Research}, title={EllipticThetaPrime}, year={2017}, url={https://reference.wolfram.com/language/ref/EllipticThetaPrime.html}, note=[Accessed: 22-November-2024 ]}