gives the Euler number TemplateBox[{n}, EulerE].


gives the Euler polynomial TemplateBox[{n, x}, EulerE2].


  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • The Euler polynomials satisfy the generating function relation 2e^(xt)/(e^t+1)=sum_(n=0)^(infty)TemplateBox[{n, x}, EulerE2](t^n/n!).
  • The Euler numbers are given by TemplateBox[{n}, EulerE]=2^nTemplateBox[{n, {1, /, 2}}, EulerE2].
  • EulerE automatically threads over lists.


open allclose all

Basic Examples  (2)

First 10 EulerE numbers:

Euler polynomials:

Scope  (4)

EulerE threads elementwise over lists:

Plot Euler polynomials:

Simple exact values are generated automatically:

TraditionalForm formatting:

Applications  (2)

Implement the Boole summation formula:

First a sequence of approximations to sum_(k=0)^n(-1)^kk^3:

The sequence converges to the exact answer:

Plot roots of Euler polynomials in the complex plane:

Properties & Relations  (5)

Find Euler numbers from their generating function:

Find Euler polynomials from their generating function:

EulerE can be represented as a DifferenceRoot:

FindSequenceFunction can recognize the EulerE sequence:

The exponential generating function for EulerE:

Possible Issues  (1)

Algorithmically produced results are often expressed using Zeta instead of EulerE:

Neat Examples  (4)

Umbral calculus with Euler numbers:

Histogram of digits of 10000^(th) Euler number:

The sequence of Euler numbers modulo a fixed number is periodic:

Define a Hankel matrix whose entries are the Euler numbers:

Its determinant can be expressed in terms of the Barnes G-function:

Wolfram Research (1988), EulerE, Wolfram Language function,


Wolfram Research (1988), EulerE, Wolfram Language function,


Wolfram Language. 1988. "EulerE." Wolfram Language & System Documentation Center. Wolfram Research.


Wolfram Language. (1988). EulerE. Wolfram Language & System Documentation Center. Retrieved from


@misc{reference.wolfram_2023_eulere, author="Wolfram Research", title="{EulerE}", year="1988", howpublished="\url{}", note=[Accessed: 22-April-2024 ]}


@online{reference.wolfram_2023_eulere, organization={Wolfram Research}, title={EulerE}, year={1988}, url={}, note=[Accessed: 22-April-2024 ]}