ExpIntegralEi
给出指数积分函数 .
更多信息
- 数学函数,适宜于符号和数值运算.
- ,其中取积分的主值.
- ExpIntegralEi[z] 在复平面 z 上有从 -∞ 到 0 的分支切割.
- 对于某些特殊自变量,ExpIntegralEi 自动计算出精确值.
- ExpIntegralEi 可求任意数值精度的值.
- ExpIntegralEi 自动逐项作用于列表的各个元素.
- ExpIntegralEi 可与 Interval 和 CenteredInterval 对象一起使用. »
范例
打开所有单元关闭所有单元基本范例 (5)
范围 (37)
数值计算 (5)
ExpIntegralEi 使用复数输入:
在高精度条件下高效计算 ExpIntegralEi:
用 Interval 和 CenteredInterval 对象计算最坏情况下的区间:
或用 Around 计算一般情况下的统计区间:
或用 MatrixFunction 计算矩阵形式的 ExpIntegralEi 函数:
特殊值 (3)
可视化 (3)
函数属性 (10)
ExpIntegralEi 是针对除 0 之外的所有实数定义的:
ExpIntegralEi 的值域是所有实数:
ExpIntegralEi 具有镜像属性 :
ExpIntegralEi 不是解析函数:
ExpIntegralEi 在实数上不是单调的:
ExpIntegralEi 不是单射函数:
ExpIntegralEi 是满射函数:
ExpIntegralEi 既不是非负,也不是非正:
ExpIntegralEi 在零处有奇点和断点:
ExpIntegralEi 既不凸,也不凹:
积分 (3)
级数展开式 (3)
函数恒等式和化简 (3)
函数表示 (4)
属性和关系 (8)
可能存在的问题 (3)
ExpIntegralEi 为适中的参数给出较大的值:
ExpIntegralEi 在负实数轴上有一个特殊值,该值不会作为从任意轴的极限:
需要为 $MaxExtraPrecision 设置一个较大的值:
文本
Wolfram Research (1988),ExpIntegralEi,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ExpIntegralEi.html (更新于 2022 年).
CMS
Wolfram 语言. 1988. "ExpIntegralEi." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2022. https://reference.wolfram.com/language/ref/ExpIntegralEi.html.
APA
Wolfram 语言. (1988). ExpIntegralEi. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/ExpIntegralEi.html 年