WOLFRAM

gives the cosine integral function TemplateBox[{z}, CosIntegral].

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • TemplateBox[{z}, CosIntegral]=-int_z^inftycos(t)/tdt.
  • CosIntegral[z] has a branch cut discontinuity in the complex z plane running from - to 0.
  • For certain special arguments, CosIntegral automatically evaluates to exact values.
  • CosIntegral can be evaluated to arbitrary numerical precision.
  • CosIntegral automatically threads over lists.
  • CosIntegral can be used with Interval and CenteredInterval objects. »

Examples

open allclose all

Basic Examples  (6)Summary of the most common use cases

Evaluate numerically:

Out[1]=1

Plot over a subset of the reals:

Out[1]=1

Plot over a subset of the complexes:

Out[1]=1

Series expansion at the origin:

Out[1]=1

Asymptotic expansion at Infinity:

Out[1]=1

Asymptotic expansion at a singular point:

Out[1]=1

Scope  (37)Survey of the scope of standard use cases

Numerical Evaluation  (6)

Evaluate numerically to high precision:

Out[1]=1

The precision of the output tracks the precision of the input:

Out[2]=2

Evaluate for complex arguments:

Out[1]=1

Evaluate CosIntegral efficiently at high precision:

Out[1]=1
Out[2]=2

CosIntegral threads elementwise over lists and matrices:

Out[1]=1

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

Out[1]=1
Out[2]=2

Or compute average-case statistical intervals using Around:

Out[3]=3

Compute the elementwise values of an array:

Out[1]=1

Or compute the matrix CosIntegral function using MatrixFunction:

Out[2]=2

Specific Values  (3)

Value at a fixed point:

Out[1]=1

Values at infinity:

Out[1]=1
Out[2]=2

Find a local maximum as a root of (dTemplateBox[{x}, CosIntegral])/(dx)=0:

Out[1]=1
Out[2]=2

Visualization  (2)

Plot the CosIntegral function:

Out[1]=1

Plot the real part of TemplateBox[{z}, CosIntegral]:

Out[1]=1

Plot the imaginary part of TemplateBox[{z}, CosIntegral]:

Out[2]=2

Function Properties  (8)

CosIntegral is defined for all positive real values:

Out[1]=1

Complex domain:

Out[2]=2

CosIntegral is not an analytic function:

Out[1]=1

Nor is it meromorphic:

Out[2]=2

CosIntegral is neither non-decreasing nor non-increasing:

Out[1]=1

CosIntegral is not injective:

Out[1]=1
Out[2]=2

CosIntegral is not surjective:

Out[1]=1
Out[2]=2

CosIntegral is neither non-negative nor non-positive:

Out[1]=1

It has both singularity and discontinuity in (-,0]:

Out[1]=1
Out[2]=2

CosIntegral is neither convex nor concave:

Out[1]=1

Differentiation  (3)

First derivative:

Out[1]=1

Higher derivatives:

Out[1]=1
Out[2]=2

Formula for the ^(th) derivative:

Out[1]=1

Integration  (3)

Indefinite integral of CosIntegral:

Out[1]=1

Definite integral of CosIntegral over its entire real domain:

Out[1]=1

More integrals:

Out[1]=1
Out[2]=2
Out[3]=3

Series Expansions  (3)

Taylor expansion for CosIntegral around :

Out[1]=1

Plots of the first three approximations for CosIntegral around :

Out[2]=2

Find series expansion at infinity:

Out[1]=1

CosIntegral can be applied to power series:

Out[1]=1

Function Identities and Simplifications  (4)

Use FullSimplify to simplify expressions containing the cosine integral:

Out[1]=1

Use FunctionExpand to express CosIntegral through other functions:

Out[1]=1

Simplify expressions to CosIntegral:

Out[1]=1

Argument simplifications:

Out[1]=1
Out[2]=2
Out[3]=3

Function Representations  (5)

Primary definition of CosIntegral:

Out[1]=1

Series representation of CosIntegral:

Out[1]=1

CosIntegral can be represented in terms of MeijerG:

Out[1]=1
Out[2]=2

CosIntegral can be represented as a DifferentialRoot:

Out[1]=1

TraditionalForm formatting:

Generalizations & Extensions  (1)Generalized and extended use cases

Find series expansions at infinity:

Out[1]=1

Applications  (6)Sample problems that can be solved with this function

Average radiated power for a thin linear half-wave antenna:

Out[1]=1

Plot the imaginary part in the complex plane:

Out[1]=1

Plot the logarithm of the absolute value in the complex plane:

Out[1]=1

Solve a differential equation:

Out[1]=1

Real part of the EulerHeisenberg effective action:

Find the leading term in :

Out[2]=2

Plot Nielsen's spiral:

Out[2]=2

The curvature is a simple function of the parameter:

Out[3]=3

Properties & Relations  (7)Properties of the function, and connections to other functions

Use FullSimplify to simplify expressions containing the cosine integral:

Out[1]=1

Use FunctionExpand to express CosIntegral through other functions:

Out[1]=1

Find a numerical root:

Out[1]=1

Obtain CosIntegral from integrals and sums:

Out[1]=1
Out[2]=2

Obtain CosIntegral from a differential equation:

Out[1]=1

Calculate the Wronskian:

Out[1]=1

Laplace transform:

Out[1]=1

Possible Issues  (2)Common pitfalls and unexpected behavior

CosIntegral can take large values for moderatesize arguments:

Out[1]=1

A larger setting for $MaxExtraPrecision can be needed:

Out[1]=1
Out[2]=2

Neat Examples  (1)Surprising or curious use cases

Nested integrals:

Out[1]=1
Wolfram Research (1991), CosIntegral, Wolfram Language function, https://reference.wolfram.com/language/ref/CosIntegral.html (updated 2022).
Wolfram Research (1991), CosIntegral, Wolfram Language function, https://reference.wolfram.com/language/ref/CosIntegral.html (updated 2022).

Text

Wolfram Research (1991), CosIntegral, Wolfram Language function, https://reference.wolfram.com/language/ref/CosIntegral.html (updated 2022).

Wolfram Research (1991), CosIntegral, Wolfram Language function, https://reference.wolfram.com/language/ref/CosIntegral.html (updated 2022).

CMS

Wolfram Language. 1991. "CosIntegral." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/CosIntegral.html.

Wolfram Language. 1991. "CosIntegral." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/CosIntegral.html.

APA

Wolfram Language. (1991). CosIntegral. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CosIntegral.html

Wolfram Language. (1991). CosIntegral. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CosIntegral.html

BibTeX

@misc{reference.wolfram_2025_cosintegral, author="Wolfram Research", title="{CosIntegral}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/CosIntegral.html}", note=[Accessed: 29-March-2025 ]}

@misc{reference.wolfram_2025_cosintegral, author="Wolfram Research", title="{CosIntegral}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/CosIntegral.html}", note=[Accessed: 29-March-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_cosintegral, organization={Wolfram Research}, title={CosIntegral}, year={2022}, url={https://reference.wolfram.com/language/ref/CosIntegral.html}, note=[Accessed: 29-March-2025 ]}

@online{reference.wolfram_2025_cosintegral, organization={Wolfram Research}, title={CosIntegral}, year={2022}, url={https://reference.wolfram.com/language/ref/CosIntegral.html}, note=[Accessed: 29-March-2025 ]}