CosIntegral
✖
CosIntegral
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
.
- CosIntegral[z] has a branch cut discontinuity in the complex z plane running from -∞ to 0.
- For certain special arguments, CosIntegral automatically evaluates to exact values.
- CosIntegral can be evaluated to arbitrary numerical precision.
- CosIntegral automatically threads over lists.
- CosIntegral can be used with Interval and CenteredInterval objects. »
Examples
open allclose allBasic Examples (6)Summary of the most common use cases

https://wolfram.com/xid/0cg3yh7kk-qvj

Plot over a subset of the reals:

https://wolfram.com/xid/0cg3yh7kk-bd6

Plot over a subset of the complexes:

https://wolfram.com/xid/0cg3yh7kk-kiedlx

Series expansion at the origin:

https://wolfram.com/xid/0cg3yh7kk-dzk

Asymptotic expansion at Infinity:

https://wolfram.com/xid/0cg3yh7kk-d7gawi

Asymptotic expansion at a singular point:

https://wolfram.com/xid/0cg3yh7kk-qrwggr

Scope (37)Survey of the scope of standard use cases
Numerical Evaluation (6)
Evaluate numerically to high precision:

https://wolfram.com/xid/0cg3yh7kk-prn

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0cg3yh7kk-ma1

Evaluate for complex arguments:

https://wolfram.com/xid/0cg3yh7kk-e294kw

Evaluate CosIntegral efficiently at high precision:

https://wolfram.com/xid/0cg3yh7kk-di5gcr


https://wolfram.com/xid/0cg3yh7kk-bq2c6r

CosIntegral threads elementwise over lists and matrices:

https://wolfram.com/xid/0cg3yh7kk-onr


https://wolfram.com/xid/0cg3yh7kk-cfvfse

Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:

https://wolfram.com/xid/0cg3yh7kk-bz8t6m


https://wolfram.com/xid/0cg3yh7kk-lmyeh7

Or compute average-case statistical intervals using Around:

https://wolfram.com/xid/0cg3yh7kk-dia93l

Compute the elementwise values of an array:

https://wolfram.com/xid/0cg3yh7kk-thgd2

Or compute the matrix CosIntegral function using MatrixFunction:

https://wolfram.com/xid/0cg3yh7kk-o5jpo

Specific Values (3)

https://wolfram.com/xid/0cg3yh7kk-kjo


https://wolfram.com/xid/0cg3yh7kk-bdij6w


https://wolfram.com/xid/0cg3yh7kk-drqkdo

Find a local maximum as a root of :

https://wolfram.com/xid/0cg3yh7kk-f2hrld


https://wolfram.com/xid/0cg3yh7kk-f7mb0a

Visualization (2)
Plot the CosIntegral function:

https://wolfram.com/xid/0cg3yh7kk-ecj8m7


https://wolfram.com/xid/0cg3yh7kk-bo5grg


https://wolfram.com/xid/0cg3yh7kk-ewtn4n

Function Properties (8)
CosIntegral is defined for all positive real values:

https://wolfram.com/xid/0cg3yh7kk-cl7ele


https://wolfram.com/xid/0cg3yh7kk-de3irc

CosIntegral is not an analytic function:

https://wolfram.com/xid/0cg3yh7kk-h5x4l2


https://wolfram.com/xid/0cg3yh7kk-e434t9

CosIntegral is neither non-decreasing nor non-increasing:

https://wolfram.com/xid/0cg3yh7kk-g6kynf

CosIntegral is not injective:

https://wolfram.com/xid/0cg3yh7kk-gi38d7


https://wolfram.com/xid/0cg3yh7kk-ctca0g

CosIntegral is not surjective:

https://wolfram.com/xid/0cg3yh7kk-hkqec4


https://wolfram.com/xid/0cg3yh7kk-b1r9xi

CosIntegral is neither non-negative nor non-positive:

https://wolfram.com/xid/0cg3yh7kk-84dui

It has both singularity and discontinuity in (-∞,0]:

https://wolfram.com/xid/0cg3yh7kk-mdtl3h


https://wolfram.com/xid/0cg3yh7kk-mn5jws

CosIntegral is neither convex nor concave:

https://wolfram.com/xid/0cg3yh7kk-kdss3

Differentiation (3)

https://wolfram.com/xid/0cg3yh7kk-mmas49


https://wolfram.com/xid/0cg3yh7kk-nfbe0l


https://wolfram.com/xid/0cg3yh7kk-fxwmfc


https://wolfram.com/xid/0cg3yh7kk-odmgl1

Integration (3)
Indefinite integral of CosIntegral:

https://wolfram.com/xid/0cg3yh7kk-bponid

Definite integral of CosIntegral over its entire real domain:

https://wolfram.com/xid/0cg3yh7kk-b9jw7l


https://wolfram.com/xid/0cg3yh7kk-nsq


https://wolfram.com/xid/0cg3yh7kk-ft0ejz


https://wolfram.com/xid/0cg3yh7kk-duomrt

Series Expansions (3)
Taylor expansion for CosIntegral around :

https://wolfram.com/xid/0cg3yh7kk-ewr1h8

Plots of the first three approximations for CosIntegral around :

https://wolfram.com/xid/0cg3yh7kk-binhar

Find series expansion at infinity:

https://wolfram.com/xid/0cg3yh7kk-mxqrcp

CosIntegral can be applied to power series:

https://wolfram.com/xid/0cg3yh7kk-f2pgyx

Function Identities and Simplifications (4)
Use FullSimplify to simplify expressions containing the cosine integral:

https://wolfram.com/xid/0cg3yh7kk-gjqjxt

Use FunctionExpand to express CosIntegral through other functions:

https://wolfram.com/xid/0cg3yh7kk-wvf5w

Simplify expressions to CosIntegral:

https://wolfram.com/xid/0cg3yh7kk-fjcqm6


https://wolfram.com/xid/0cg3yh7kk-bztxyr


https://wolfram.com/xid/0cg3yh7kk-efbt6f


https://wolfram.com/xid/0cg3yh7kk-jgwst4

Function Representations (5)
Primary definition of CosIntegral:

https://wolfram.com/xid/0cg3yh7kk-d616p

Series representation of CosIntegral:

https://wolfram.com/xid/0cg3yh7kk-fii

CosIntegral can be represented in terms of MeijerG:

https://wolfram.com/xid/0cg3yh7kk-fgl6pr


https://wolfram.com/xid/0cg3yh7kk-cgcw9i

CosIntegral can be represented as a DifferentialRoot:

https://wolfram.com/xid/0cg3yh7kk-bgjnbg

TraditionalForm formatting:

https://wolfram.com/xid/0cg3yh7kk-k9q54t

Generalizations & Extensions (1)Generalized and extended use cases
Applications (6)Sample problems that can be solved with this function
Average radiated power for a thin linear half-wave antenna:

https://wolfram.com/xid/0cg3yh7kk-l5f

Plot the imaginary part in the complex plane:

https://wolfram.com/xid/0cg3yh7kk-d4

Plot the logarithm of the absolute value in the complex plane:

https://wolfram.com/xid/0cg3yh7kk-kw9

Solve a differential equation:

https://wolfram.com/xid/0cg3yh7kk-e129m

Real part of the Euler–Heisenberg effective action:

https://wolfram.com/xid/0cg3yh7kk-dasdsl

https://wolfram.com/xid/0cg3yh7kk-iq2ahy


https://wolfram.com/xid/0cg3yh7kk-e2lii

https://wolfram.com/xid/0cg3yh7kk-lu6dsb

The curvature is a simple function of the parameter:

https://wolfram.com/xid/0cg3yh7kk-g4w4zj

Properties & Relations (7)Properties of the function, and connections to other functions
Use FullSimplify to simplify expressions containing the cosine integral:

https://wolfram.com/xid/0cg3yh7kk-vgj

Use FunctionExpand to express CosIntegral through other functions:

https://wolfram.com/xid/0cg3yh7kk-e7stp9


https://wolfram.com/xid/0cg3yh7kk-o8a

Obtain CosIntegral from integrals and sums:

https://wolfram.com/xid/0cg3yh7kk-po4


https://wolfram.com/xid/0cg3yh7kk-d8z

Obtain CosIntegral from a differential equation:

https://wolfram.com/xid/0cg3yh7kk-n6s


https://wolfram.com/xid/0cg3yh7kk-xs


https://wolfram.com/xid/0cg3yh7kk-l26

Possible Issues (2)Common pitfalls and unexpected behavior
CosIntegral can take large values for moderate‐size arguments:

https://wolfram.com/xid/0cg3yh7kk-buc

A larger setting for $MaxExtraPrecision can be needed:

https://wolfram.com/xid/0cg3yh7kk-mr1



https://wolfram.com/xid/0cg3yh7kk-skm

Wolfram Research (1991), CosIntegral, Wolfram Language function, https://reference.wolfram.com/language/ref/CosIntegral.html (updated 2022).
Text
Wolfram Research (1991), CosIntegral, Wolfram Language function, https://reference.wolfram.com/language/ref/CosIntegral.html (updated 2022).
Wolfram Research (1991), CosIntegral, Wolfram Language function, https://reference.wolfram.com/language/ref/CosIntegral.html (updated 2022).
CMS
Wolfram Language. 1991. "CosIntegral." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/CosIntegral.html.
Wolfram Language. 1991. "CosIntegral." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/CosIntegral.html.
APA
Wolfram Language. (1991). CosIntegral. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CosIntegral.html
Wolfram Language. (1991). CosIntegral. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CosIntegral.html
BibTeX
@misc{reference.wolfram_2025_cosintegral, author="Wolfram Research", title="{CosIntegral}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/CosIntegral.html}", note=[Accessed: 29-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_cosintegral, organization={Wolfram Research}, title={CosIntegral}, year={2022}, url={https://reference.wolfram.com/language/ref/CosIntegral.html}, note=[Accessed: 29-March-2025
]}