WOLFRAM

finds an isomorphism that maps the graph g1 to g2 by renaming vertices.

finds at most n isomorphisms.

FindGraphIsomorphism[{vw,},]

uses rules vw to specify the graph g.

Details and Options

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Find an isomorphism that maps two graphs:

Out[1]=1

Find all isomorphisms:

Out[1]=1

Scope  (8)Survey of the scope of standard use cases

Specification  (5)

FindGraphIsomorphism works with undirected graphs:

Out[1]=1

Directed graphs:

Out[1]=1

Use rules to specify the graph:

Out[1]=1

It returns an empty list if no isomorphism can be found:

Out[1]=1

FindGraphIsomorphism works with large graphs:

Out[3]=3

Enumeration  (3)

Find an isomorphism that maps two graphs:

Out[1]=1

Find at most two isomorphisms:

Out[1]=1

Find all isomorphisms:

Out[1]=1

Applications  (1)Sample problems that can be solved with this function

Find an isomorphism that maps two graphs:

Out[5]=5

Highlight and label two graphs according to the mapping:

Out[8]=8

Properties & Relations  (3)Properties of the function, and connections to other functions

Isomorphic graphs have the same number of vertices and edges:

Out[1]=1
Out[2]=2
Out[3]=3
Out[4]=4

Test whether two graphs are isomorphic using IsomorphicGraphQ:

Out[1]=1
Out[2]=2
Out[3]=3

Isomorphic graphs have the same canonical graph:

Out[2]=2
Out[3]=3
Wolfram Research (2010), FindGraphIsomorphism, Wolfram Language function, https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html (updated 2015).
Wolfram Research (2010), FindGraphIsomorphism, Wolfram Language function, https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html (updated 2015).

Text

Wolfram Research (2010), FindGraphIsomorphism, Wolfram Language function, https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html (updated 2015).

Wolfram Research (2010), FindGraphIsomorphism, Wolfram Language function, https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html (updated 2015).

CMS

Wolfram Language. 2010. "FindGraphIsomorphism." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html.

Wolfram Language. 2010. "FindGraphIsomorphism." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html.

APA

Wolfram Language. (2010). FindGraphIsomorphism. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html

Wolfram Language. (2010). FindGraphIsomorphism. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html

BibTeX

@misc{reference.wolfram_2025_findgraphisomorphism, author="Wolfram Research", title="{FindGraphIsomorphism}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html}", note=[Accessed: 19-June-2025 ]}

@misc{reference.wolfram_2025_findgraphisomorphism, author="Wolfram Research", title="{FindGraphIsomorphism}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html}", note=[Accessed: 19-June-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_findgraphisomorphism, organization={Wolfram Research}, title={FindGraphIsomorphism}, year={2015}, url={https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html}, note=[Accessed: 19-June-2025 ]}

@online{reference.wolfram_2025_findgraphisomorphism, organization={Wolfram Research}, title={FindGraphIsomorphism}, year={2015}, url={https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html}, note=[Accessed: 19-June-2025 ]}