FindGraphIsomorphism
✖
FindGraphIsomorphism
finds an isomorphism that maps the graph g1 to g2 by renaming vertices.
Details and Options

- FindGraphIsomorphism is also known as edge-preserving bijection.
- FindGraphIsomorphism is typically used for identification of equivalent structures and verification of equivalence of various representations.
- FindGraphIsomorphism gives a list of associations Association[v1->w1,v2->w2,…] such that vi and vj are adjacent vertices in g1 if wi and wj are adjacent vertices in g2, and vice versa.
- FindGraphIsomorphism gives an empty list if no isomorphism can be found.
- FindGraphIsomorphism[g1,g2,All] gives all the isomorphisms.

Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Scope (8)Survey of the scope of standard use cases
Specification (5)
FindGraphIsomorphism works with undirected graphs:

https://wolfram.com/xid/0rkgdpvtjbdtg14-d9n8ou


https://wolfram.com/xid/0rkgdpvtjbdtg14-bjwckj

Use rules to specify the graph:

https://wolfram.com/xid/0rkgdpvtjbdtg14-bndh30

It returns an empty list if no isomorphism can be found:

https://wolfram.com/xid/0rkgdpvtjbdtg14-b83ts

FindGraphIsomorphism works with large graphs:

https://wolfram.com/xid/0rkgdpvtjbdtg14-fl62op

https://wolfram.com/xid/0rkgdpvtjbdtg14-hx93y

https://wolfram.com/xid/0rkgdpvtjbdtg14-4iugm

Enumeration (3)
Applications (1)Sample problems that can be solved with this function
Find an isomorphism that maps two graphs:

https://wolfram.com/xid/0rkgdpvtjbdtg14-cmg60p

https://wolfram.com/xid/0rkgdpvtjbdtg14-hyregk

https://wolfram.com/xid/0rkgdpvtjbdtg14-cvr7dg

https://wolfram.com/xid/0rkgdpvtjbdtg14-nagfe

https://wolfram.com/xid/0rkgdpvtjbdtg14-da11ma

Highlight and label two graphs according to the mapping:

https://wolfram.com/xid/0rkgdpvtjbdtg14-bc8hxs

https://wolfram.com/xid/0rkgdpvtjbdtg14-frhw52

https://wolfram.com/xid/0rkgdpvtjbdtg14-g2k4x2

Properties & Relations (3)Properties of the function, and connections to other functions
Isomorphic graphs have the same number of vertices and edges:

https://wolfram.com/xid/0rkgdpvtjbdtg14-baigi


https://wolfram.com/xid/0rkgdpvtjbdtg14-c1suyl


https://wolfram.com/xid/0rkgdpvtjbdtg14-subr3


https://wolfram.com/xid/0rkgdpvtjbdtg14-ch2vsv

Test whether two graphs are isomorphic using IsomorphicGraphQ:

https://wolfram.com/xid/0rkgdpvtjbdtg14-f4vgcx


https://wolfram.com/xid/0rkgdpvtjbdtg14-fw1rxe


https://wolfram.com/xid/0rkgdpvtjbdtg14-b8ah4f

Isomorphic graphs have the same canonical graph:

https://wolfram.com/xid/0rkgdpvtjbdtg14-gawxbw

https://wolfram.com/xid/0rkgdpvtjbdtg14-bzde4x


https://wolfram.com/xid/0rkgdpvtjbdtg14-bbygwo

Wolfram Research (2010), FindGraphIsomorphism, Wolfram Language function, https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html (updated 2015).
Text
Wolfram Research (2010), FindGraphIsomorphism, Wolfram Language function, https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html (updated 2015).
Wolfram Research (2010), FindGraphIsomorphism, Wolfram Language function, https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html (updated 2015).
CMS
Wolfram Language. 2010. "FindGraphIsomorphism." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html.
Wolfram Language. 2010. "FindGraphIsomorphism." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html.
APA
Wolfram Language. (2010). FindGraphIsomorphism. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html
Wolfram Language. (2010). FindGraphIsomorphism. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html
BibTeX
@misc{reference.wolfram_2025_findgraphisomorphism, author="Wolfram Research", title="{FindGraphIsomorphism}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html}", note=[Accessed: 19-June-2025
]}
BibLaTeX
@online{reference.wolfram_2025_findgraphisomorphism, organization={Wolfram Research}, title={FindGraphIsomorphism}, year={2015}, url={https://reference.wolfram.com/language/ref/FindGraphIsomorphism.html}, note=[Accessed: 19-June-2025
]}