FiniteAbelianGroupCount
✖
FiniteAbelianGroupCount
Details

- Integer mathematical function, suitable for both symbolic and numerical manipulation.
- FiniteAbelianGroupCount automatically threads over lists.
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Scope (2)Survey of the scope of standard use cases

https://wolfram.com/xid/0vu4cy96rx6svadz0ya-9ogmq

FiniteAbelianGroupCount threads element-wise over lists:

https://wolfram.com/xid/0vu4cy96rx6svadz0ya-hx7zo

Applications (2)Sample problems that can be solved with this function
Properties & Relations (6)Properties of the function, and connections to other functions
FiniteAbelianGroupCount[n] gives the number of Abelian groups of order n:

https://wolfram.com/xid/0vu4cy96rx6svadz0ya-059mf3

FiniteGroupCount[n] gives the number of groups of order n, both Abelian and non-Abelian:

https://wolfram.com/xid/0vu4cy96rx6svadz0ya-fed55

For low orders, FiniteGroupData lists explicit representative Abelian groups of a given order:

https://wolfram.com/xid/0vu4cy96rx6svadz0ya-opip95


https://wolfram.com/xid/0vu4cy96rx6svadz0ya-xeu24p


https://wolfram.com/xid/0vu4cy96rx6svadz0ya-nhotvj

Construct permutation group representations of those groups:

https://wolfram.com/xid/0vu4cy96rx6svadz0ya-6ql8kl


https://wolfram.com/xid/0vu4cy96rx6svadz0ya-see2tr

The number of finite Abelian groups can be found using PartitionsP:

https://wolfram.com/xid/0vu4cy96rx6svadz0ya-gsvedy


https://wolfram.com/xid/0vu4cy96rx6svadz0ya-p127ee

FiniteAbelianGroupCount[n] depends only on prime exponents of n:

https://wolfram.com/xid/0vu4cy96rx6svadz0ya-bpsz7j

FiniteAbelianGroupCount is a multiplicative function:

https://wolfram.com/xid/0vu4cy96rx6svadz0ya-c3hk8p


https://wolfram.com/xid/0vu4cy96rx6svadz0ya-hmrxv1

FindSequenceFunction can recognize the FiniteAbelianGroupCount sequence:

https://wolfram.com/xid/0vu4cy96rx6svadz0ya-hj2mn6


https://wolfram.com/xid/0vu4cy96rx6svadz0ya-5okec

Possible Issues (1)Common pitfalls and unexpected behavior
FiniteAbelianGroupCount evaluates only for explicit integer values:

https://wolfram.com/xid/0vu4cy96rx6svadz0ya-bft5sy


Use Simplify to find implicit integers in arguments:

https://wolfram.com/xid/0vu4cy96rx6svadz0ya-h7r3kf

Neat Examples (1)Surprising or curious use cases
Successive differences of FiniteAbelianGroupCount modulo 2:

https://wolfram.com/xid/0vu4cy96rx6svadz0ya-mfji4

Wolfram Research (2008), FiniteAbelianGroupCount, Wolfram Language function, https://reference.wolfram.com/language/ref/FiniteAbelianGroupCount.html.
Text
Wolfram Research (2008), FiniteAbelianGroupCount, Wolfram Language function, https://reference.wolfram.com/language/ref/FiniteAbelianGroupCount.html.
Wolfram Research (2008), FiniteAbelianGroupCount, Wolfram Language function, https://reference.wolfram.com/language/ref/FiniteAbelianGroupCount.html.
CMS
Wolfram Language. 2008. "FiniteAbelianGroupCount." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FiniteAbelianGroupCount.html.
Wolfram Language. 2008. "FiniteAbelianGroupCount." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FiniteAbelianGroupCount.html.
APA
Wolfram Language. (2008). FiniteAbelianGroupCount. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FiniteAbelianGroupCount.html
Wolfram Language. (2008). FiniteAbelianGroupCount. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FiniteAbelianGroupCount.html
BibTeX
@misc{reference.wolfram_2025_finiteabeliangroupcount, author="Wolfram Research", title="{FiniteAbelianGroupCount}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/FiniteAbelianGroupCount.html}", note=[Accessed: 07-June-2025
]}
BibLaTeX
@online{reference.wolfram_2025_finiteabeliangroupcount, organization={Wolfram Research}, title={FiniteAbelianGroupCount}, year={2008}, url={https://reference.wolfram.com/language/ref/FiniteAbelianGroupCount.html}, note=[Accessed: 07-June-2025
]}