# FromPolarCoordinates

FromPolarCoordinates[{r,θ}]

gives the {x,y} Cartesian coordinates corresponding to the polar coordinates {r,θ}.

FromPolarCoordinates[{r,θ1,,θn-2,ϕ}]

gives the coordinates corresponding to the hyperspherical coordinates {r,θ1,,θn-2,ϕ}

# Examples

open allclose all

## Basic Examples(3)

Convert a general point in polar coordinates:

A specific point:

A conversion in dimension 3:

## Scope(3)

Convert several points:

A matrix of points:

Five-dimensional hyperspherical coordinates:

## Properties & Relations(6)

FromPolarCoordinates checks that inputs obey the normal restrictions of polar coordinates:

This point violates the condition on the angle :

Extract the symbolic transform from CoordinateTransformData to apply it to singular points:

FromPolarCoordinates preserves the shape of arrays:

This includes empty arrays:

is a special case of CoordinateTransform:

FromPolarCoordinates[{x,y,z}] uses spherical coordinates about the axis:

FromSphericalCoordinates[{x,y,z}] uses spherical coordinates about the axis:

FromPolarCoordinates changes the coordinate values of points:

TransformedField changes the coordinate expressions for fields:

Wolfram Research (2015), FromPolarCoordinates, Wolfram Language function, https://reference.wolfram.com/language/ref/FromPolarCoordinates.html.

#### Text

Wolfram Research (2015), FromPolarCoordinates, Wolfram Language function, https://reference.wolfram.com/language/ref/FromPolarCoordinates.html.

#### CMS

Wolfram Language. 2015. "FromPolarCoordinates." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FromPolarCoordinates.html.

#### APA

Wolfram Language. (2015). FromPolarCoordinates. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FromPolarCoordinates.html

#### BibTeX

@misc{reference.wolfram_2024_frompolarcoordinates, author="Wolfram Research", title="{FromPolarCoordinates}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/FromPolarCoordinates.html}", note=[Accessed: 13-September-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_frompolarcoordinates, organization={Wolfram Research}, title={FromPolarCoordinates}, year={2015}, url={https://reference.wolfram.com/language/ref/FromPolarCoordinates.html}, note=[Accessed: 13-September-2024 ]}