# CoordinateTransform

CoordinateTransform[t,pt]

performs the coordinate transformation t on the point pt.

CoordinateTransform[t,{pt1,pt2,}]

transforms several points.

# Examples

open allclose all

## Basic Examples(2)

Change a generic point in polar coordinates to Cartesian coordinates:

Change a specific point in Cartesian coordinates to polar coordinates:

## Scope(5)

Give the {x,y,z} values for a point expressed in spherical coordinates:

Change a point in prolate spheroidal to spherical coordinates, specifying a parameter for prolate spheroidal coordinates:

The same transformation, expressed more verbosely:

Transform coordinates on the sphere of radius r to corresponding values in the stereographic projection:

Transform several points at once from cylindrical to Cartesian coordinates:

Transform a matrix of points from Cartesian to spherical coordinates:

## Applications(1)

Convert a curve in non-Cartesian coordinates to a corresponding Cartesian expression for purposes of visualization:

This curve is approximately 11.2 radii in length:

## Properties & Relations(8)

CoordinateTransformData[ent,"Mapping",pt] is effectively CoordinateTransform[ent,pt]:

CoordinateTransform checks that inputs obey the coordinate range assumptions of charts:

This point violates the coordinate range assumption on the polar angle :

Extract the symbolic transform from CoordinateTransformData to apply it to singular points:

The reverse mapping is not well-defined at this point:

CoordinateTransform preserves the shape of arrays:

This includes empty arrays:

CoordinateTransform changes the coordinate values of points:

TransformedField changes the coordinate expressions for fields:

ToPolarCoordinates is a special case of CoordinateTransform:

FromSphericalCoordinates is a special case of CoordinateTransform:

ToSphericalCoordinates is a special case of CoordinateTransform:

Wolfram Research (2012), CoordinateTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/CoordinateTransform.html (updated 2015).

#### Text

Wolfram Research (2012), CoordinateTransform, Wolfram Language function, https://reference.wolfram.com/language/ref/CoordinateTransform.html (updated 2015).

#### CMS

Wolfram Language. 2012. "CoordinateTransform." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/CoordinateTransform.html.

#### APA

Wolfram Language. (2012). CoordinateTransform. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CoordinateTransform.html

#### BibTeX

@misc{reference.wolfram_2024_coordinatetransform, author="Wolfram Research", title="{CoordinateTransform}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/CoordinateTransform.html}", note=[Accessed: 23-June-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_coordinatetransform, organization={Wolfram Research}, title={CoordinateTransform}, year={2015}, url={https://reference.wolfram.com/language/ref/CoordinateTransform.html}, note=[Accessed: 23-June-2024 ]}