WOLFRAM

gives the greatest distance between any pair of vertices in the graph g.

GraphDiameter[{vw,}]

uses rules vw to specify the graph g.

Details and Options

  • The following options can be given:
  • EdgeWeightAutomaticweight for each edge
    MethodAutomaticmethod to use
  • With the default setting EdgeWeight->Automatic, the edge weight of an edge is taken to be the EdgeWeight of the graph g if available; otherwise, it is 1.
  • Possible Method settings include "Dijkstra", "FloydWarshall", "Johnson", and "PseudoDiameter".
  • GraphDiameter works with undirected graphs, directed graphs, weighted graphs, multigraphs, and mixed graphs.

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

Give the graph diameter for a complete graph:

Out[1]=1

Scope  (7)Survey of the scope of standard use cases

GraphDiameter works with undirected graphs:

Out[1]=1

Directed graphs:

Out[1]=1

Weighted graphs:

Out[1]=1

Multigraphs:

Out[1]=1

Mixed graphs:

Out[1]=1

Use rules to specify the graph:

Out[1]=1

GraphDiameter works with large graphs:

Out[2]=2

Applications  (2)Sample problems that can be solved with this function

Illustrate the diameter in two Petersen graphs:

Out[4]=4

For a CompleteGraph, the diameter is 1:

Out[5]=5

For a PathGraph of size , the diameter is :

Out[6]=6

For a CycleGraph of size , the diameter is TemplateBox[{{n, /, 2}}, Floor]:

Out[7]=7

For a WheelGraph of size 5 or more, the diameter is 2:

Out[8]=8

A WheelGraph of size 4 is a complete graph, so the diameter is 1:

Out[11]=11

For a GridGraph of size {m,n}, the diameter is :

Out[12]=12

For a CompleteKaryTree tree of depth , the diameter is :

Out[13]=13

Find the largest number of steps separating two people at a family gathering network:

Out[1]=1
Out[2]=2

Properties & Relations  (3)Properties of the function, and connections to other functions

For a connected graph, the diameter can be computed by VertexEccentricity:

Out[1]=1
Out[2]=2
Out[3]=3

If a simple graph has diameter greater than 3, then its complement has diameter less than 3:

Out[1]=1
Out[2]=2
Out[3]=3

The graph diameter is unchanged when reversing every edge:

Out[2]=2
Out[3]=3
Wolfram Research (2010), GraphDiameter, Wolfram Language function, https://reference.wolfram.com/language/ref/GraphDiameter.html (updated 2015).
Wolfram Research (2010), GraphDiameter, Wolfram Language function, https://reference.wolfram.com/language/ref/GraphDiameter.html (updated 2015).

Text

Wolfram Research (2010), GraphDiameter, Wolfram Language function, https://reference.wolfram.com/language/ref/GraphDiameter.html (updated 2015).

Wolfram Research (2010), GraphDiameter, Wolfram Language function, https://reference.wolfram.com/language/ref/GraphDiameter.html (updated 2015).

CMS

Wolfram Language. 2010. "GraphDiameter." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/GraphDiameter.html.

Wolfram Language. 2010. "GraphDiameter." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/GraphDiameter.html.

APA

Wolfram Language. (2010). GraphDiameter. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GraphDiameter.html

Wolfram Language. (2010). GraphDiameter. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GraphDiameter.html

BibTeX

@misc{reference.wolfram_2025_graphdiameter, author="Wolfram Research", title="{GraphDiameter}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/GraphDiameter.html}", note=[Accessed: 19-June-2025 ]}

@misc{reference.wolfram_2025_graphdiameter, author="Wolfram Research", title="{GraphDiameter}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/GraphDiameter.html}", note=[Accessed: 19-June-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_graphdiameter, organization={Wolfram Research}, title={GraphDiameter}, year={2015}, url={https://reference.wolfram.com/language/ref/GraphDiameter.html}, note=[Accessed: 19-June-2025 ]}

@online{reference.wolfram_2025_graphdiameter, organization={Wolfram Research}, title={GraphDiameter}, year={2015}, url={https://reference.wolfram.com/language/ref/GraphDiameter.html}, note=[Accessed: 19-June-2025 ]}