GraphPower
✖
GraphPower
Details and Options

- The graph-n
power has the same vertices, and vertex vi is adjacent to vertex vj only if there is a path of at most length n from vi to vj.
- GraphPower works with undirected graphs, directed graphs, multigraphs, and mixed graphs.
Examples
open allclose allBasic Examples (1)Summary of the most common use cases
Scope (5)Survey of the scope of standard use cases
GraphPower works with undirected graphs:
In[1]:=1

✖
https://wolfram.com/xid/0j450zq2-jkrcuo
Out[1]=1

In[1]:=1

✖
https://wolfram.com/xid/0j450zq2-bltp69
Out[1]=1

In[1]:=1

✖
https://wolfram.com/xid/0j450zq2-iog63o
Out[1]=1

In[1]:=1

✖
https://wolfram.com/xid/0j450zq2-czvddh
Out[1]=1

Use rules to specify the graph:
In[1]:=1

✖
https://wolfram.com/xid/0j450zq2-bndh30
Out[1]=1

Properties & Relations (2)Properties of the function, and connections to other functions
Raising a connected graph to the power of its graph diameter gives a complete graph:
In[1]:=1

✖
https://wolfram.com/xid/0j450zq2-oavpvp
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0j450zq2-ilq46b
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/0j450zq2-dl8tsi
Out[3]=3

Graph- powers can be obtained by the sum of the first
powers of the adjacency matrix:
In[1]:=1

✖
https://wolfram.com/xid/0j450zq2-d2je4k
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/0j450zq2-ey2x2k
In[3]:=3

✖
https://wolfram.com/xid/0j450zq2-gvg4na
Out[3]=3

Wolfram Research (2010), GraphPower, Wolfram Language function, https://reference.wolfram.com/language/ref/GraphPower.html (updated 2015).
✖
Wolfram Research (2010), GraphPower, Wolfram Language function, https://reference.wolfram.com/language/ref/GraphPower.html (updated 2015).
Text
Wolfram Research (2010), GraphPower, Wolfram Language function, https://reference.wolfram.com/language/ref/GraphPower.html (updated 2015).
✖
Wolfram Research (2010), GraphPower, Wolfram Language function, https://reference.wolfram.com/language/ref/GraphPower.html (updated 2015).
CMS
Wolfram Language. 2010. "GraphPower." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/GraphPower.html.
✖
Wolfram Language. 2010. "GraphPower." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/GraphPower.html.
APA
Wolfram Language. (2010). GraphPower. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GraphPower.html
✖
Wolfram Language. (2010). GraphPower. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GraphPower.html
BibTeX
✖
@misc{reference.wolfram_2025_graphpower, author="Wolfram Research", title="{GraphPower}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/GraphPower.html}", note=[Accessed: 06-May-2025
]}
BibLaTeX
✖
@online{reference.wolfram_2025_graphpower, organization={Wolfram Research}, title={GraphPower}, year={2015}, url={https://reference.wolfram.com/language/ref/GraphPower.html}, note=[Accessed: 06-May-2025
]}