HeatTransferPDEComponent
✖
HeatTransferPDEComponent
yields a heat transfer PDE term with variables vars and parameters pars.
Details




- HeatTransferPDEComponent returns a sum of differential operators to be used as a part of partial differential equations:
- HeatTransferPDEComponent models the generation and propagation of thermal energy in physical systems by mechanisms such as convection, conduction and radiation.
- HeatTransferPDEComponent models heat transfer phenomena with dependent variable temperature
in [
], independent variables
in [
] and time variable
in [
].
- Stationary variables vars are vars={Θ[x1,…,xn],{x1,…,xn}}.
- Time-dependent variables vars are vars={Θ[t,x1,…,xn],t,{x1,…,xn}}.
- The non-conservative time-dependent heat transfer model HeatTransferPDEComponent is based on a convection-diffusion model with mass density
, specific heat capacity
, thermal conductivity
, convection velocity vector
and heat source
:
- The non-conservative stationary heat transfer PDE term is given by:
- The implicit default boundary condition for the non-conservative model is a HeatOutflowValue.
- The difference between the non-conservative model and the conservative model is the treatment of a convection velocity
.
- The units of the heat transfer model terms are in [
], or equivalently in [
].
- The following parameters pars can be given:
-
parameter default symbol "HeatConvectionVelocity" {0,…} , flow velocity [
]
"HeatSource" 0 , heat source [
]
"MassDensity" 1 , density [
]
"Material" Automatic "ModelForm" "NonConservative" none "RegionSymmetry" None "SpecificHeatCapacity" 1 , specific heat capacity [
]
"ThermalConductivity" IdentityMatrix , thermal conductivity [
- All parameters may depend on any of
,
and
, as well as other dependent variables.
- The number of independent variables
determines the dimensions of
and the length of
.
- Sometimes the heat equation is specified with a thermal diffusivity. The thermal diffusivity is the thermal conductivity divided by the density and the specific heat capacity at constant pressure.
- The thermal convection velocity specifies the velocity
with which a fluid transports heat. If no fluid is present, the thermal convection velocity is 0.
- A heat source
models thermal energy that is introduced (positive) or removed (negative) from the system.
- A possible choice for the parameter "RegionSymmetry" is "Axisymmetric".
- "Axisymmetric" region symmetry represents a truncated cylindrical coordinate system where the cylindrical coordinates are reduced by removing the angle variable as follows:
-
dimension reduction equation 1D 2D - The input specification for the parameters is exactly the same as for their corresponding operator terms.
- Coupled equations can be generated with the same input specification as with the corresponding operator terms.
- If no parameters are specified, the default heat transfer PDE is:
- If the HeatTransferPDEComponent depends on parameters
that are specified in the association pars as …,keypi…,pivi,…], the parameters
are replaced with
.





Examples
open allclose allBasic Examples (4)Summary of the most common use cases
Define a time-independent heat transfer model:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-gratei

Define a time-dependent heat transfer model:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-1a2ea6

Set up a time-dependent heat transfer model with particular material parameters:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-k1ns9q

Model a temperature field with a heat source in a rod:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-t36opy


https://wolfram.com/xid/0jvrfas5pq4yornuf19e-rksc17

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-khqjar

Scope (7)Survey of the scope of standard use cases
Basic Examples (2)
1D (1)
Model a temperature field with two heat conditions at the sides:
Set up the heat transfer model variables :

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-vc1i8f

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-ywex3f
Specify heat transfer model parameter thermal conductivity :

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-kzw74j
Specify heat surface conditions:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-rg1afc


https://wolfram.com/xid/0jvrfas5pq4yornuf19e-38wl2z


https://wolfram.com/xid/0jvrfas5pq4yornuf19e-d4x4w2

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-fpq186

2D (1)
Model a ceramic strip that is embedded in a high-thermal-conductive material. The side boundaries of the strip are maintained at a constant temperature . The top surface of the strip is losing heat via both heat convection and heat radiation to the ambient environment at
. The bottom boundary is assumed to be thermally insulated:
Model a temperature field and the thermal radiation and thermal transfer with:
Set up the heat transfer model variables :

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-m21j9s
Set up a rectangular domain with a width of and a height of
:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-0ob17d
Specify thermal conductivity :

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-6n11ho
Set up temperature surface boundary conditions at the left and right boundaries:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-1a3zuy

Set up a heat transfer boundary condition on the top surface:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-4lussn

Also set up a thermal radiation boundary condition on the top surface:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-jrz2i2


https://wolfram.com/xid/0jvrfas5pq4yornuf19e-7ecwjm


https://wolfram.com/xid/0jvrfas5pq4yornuf19e-qc09l9

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-nl09e2

3D (1)
Model a temperature field with two heat conditions at the sides and an orthotropic thermal conductivity :
Set up the heat transfer model variables :

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-mriezn

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-vvom6e
Specify an orthotropic thermal conductivity :

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-cgktag
Specify heat surface conditions:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-0mlvs2

Set up the equation with a thermal heat flux of
applied at the left end for the first 300 seconds:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-x8o7sh


https://wolfram.com/xid/0jvrfas5pq4yornuf19e-fki728

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-lqb6x0

Time Dependent (1)
Model a temperature field and a thermal heat flux through part of the boundary with:
Set up the heat transfer model variables :

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-34j9jk

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-r7tzll
Specify heat transfer model parameters mass density , specific heat capacity
and thermal conductivity
:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-nh5hwt
Specify a thermal heat flux of
applied at the left end for the first 300 seconds:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-qhujyr

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-mo5420
Set up the equation with a thermal heat flux of
applied at the left end for the first 300 seconds:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-q9buq4


https://wolfram.com/xid/0jvrfas5pq4yornuf19e-hdh9t

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-9rw1lg

Time-Dependent Nonlinear (1)
Model a temperature field with a nonlinear heat conductivity term with:
Set up the heat transfer model variables :

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-89v7o3

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-pwm7no
Specify heat transfer model parameters mass density , specific heat capacity
and a nonlinear thermal conductivity
:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-52zc5m
Specify a thermal heat flux of
applied at the left end for the first 300 seconds:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-olua29

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-07dtcx
Set up the equation with a thermal heat flux of
applied at the left end for the first 300 seconds:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-q79fer


https://wolfram.com/xid/0jvrfas5pq4yornuf19e-ba1s25
Solve a linear version of the PDE:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-vk4bd5

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-q1rikc

Applications (7)Sample problems that can be solved with this function
Boundary Conditions (5)
Compute the temperature field with model variables and parameters
with a thermal surface
of
at the left boundary:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-7u3cv4

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-oksi8h


https://wolfram.com/xid/0jvrfas5pq4yornuf19e-fib84z
Visualize the solution and note the sinusoidal temperature change on the left:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-1wx5br

Compute the temperature field with model variables parameters
:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-6dumtk
Set up the equation with a thermal outflow boundary at the right end:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-m5d5sp

Define the initial temperature field:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-9p9r14

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-c3ji41
Visualize the solution and note how the energy leaves the domain through the thermal outflow boundary on the right:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-5hqogr

Model a temperature field and a thermal radiation boundary with:
Set up the heat transfer model variables :

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-4dpxxz

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-ne9b6c
Specify heat transfer model parameters mass density , specific heat capacity
and thermal conductivity
:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-7my2xp
Specify boundary condition parameters with a constant ambient temperature of
and a surface emissivity
of
:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-dd4ukq

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-lp5vnt


https://wolfram.com/xid/0jvrfas5pq4yornuf19e-iecz68

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-jl65z5

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-bhb4ri

Model a temperature field with heat transfer boundary:
Set up the heat transfer model variables :

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-h8inxy

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-rwwjwk
Specify heat transfer model parameters mass density , specific heat capacity
and thermal conductivity
:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-niwhpg
Specify boundary condition parameters with an external flow temperature of
and a heat transfer coefficient
of
:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-ugxrli

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-trtpk1


https://wolfram.com/xid/0jvrfas5pq4yornuf19e-ldz1rm

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-yzdc2u

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-ncr9ny

Model a temperature field and a thermal insulation and a thermal heat flux boundary with:
Set up the heat transfer model variables :

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-58b0vw

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-pxkjuo
Specify heat transfer model parameters mass density , specific heat capacity
and thermal conductivity
:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-hxcnyd
Specify boundary condition parameters for a heat flux of
:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-ml9b8u

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-8fooqp


https://wolfram.com/xid/0jvrfas5pq4yornuf19e-rmaw60

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-nnhj0f

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-31aqe5

Coupled Equations (2)
Solve a coupled heat and mass transport model:
Set up the heat transfer mass transport model variables :

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-rc8kak

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-4hrepw
Specify heat transfer and mass transport model parameters, heat source , thermal conductivity
, mass diffusivity
and mass source
:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-rhdean
Set up the model and initial conditions:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-o2zn4n


https://wolfram.com/xid/0jvrfas5pq4yornuf19e-sk1jic

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-d8tpd9

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-tue3fc

Solve a coupled heat transfer and mass transport model with a thermal transfer value and a mass flux value on the boundary:
Set up the heat transfer mass transport model variables :

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-5peo39

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-1i8dxd
Specify heat transfer and mass transport model parameters, heat source , thermal conductivity
, mass diffusivity
and mass source
:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-kt1g73
Specify boundary condition parameters for a thermal convection value with an external flow temperature of 1000 K and a heat transfer coefficient
of
:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-xbppw1

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-19n49w


https://wolfram.com/xid/0jvrfas5pq4yornuf19e-ybdqoa

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-18gekc

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-bwb6k3

Possible Issues (1)Common pitfalls and unexpected behavior
For symbolic computation, the "ThermalConductivity" parameter should be given as a matrix:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-soguh

For numeric values, the "ThermalConductivity" parameter is automatically converted to a matrix of proper dimensions:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-wm5dmv

This automatic conversion is not possible for symbolic input:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-yxq6sy

Not providing the properly dimensioned matrix will result in an error:

https://wolfram.com/xid/0jvrfas5pq4yornuf19e-nguznp


Wolfram Research (2020), HeatTransferPDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/HeatTransferPDEComponent.html (updated 2022).
Text
Wolfram Research (2020), HeatTransferPDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/HeatTransferPDEComponent.html (updated 2022).
Wolfram Research (2020), HeatTransferPDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/HeatTransferPDEComponent.html (updated 2022).
CMS
Wolfram Language. 2020. "HeatTransferPDEComponent." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/HeatTransferPDEComponent.html.
Wolfram Language. 2020. "HeatTransferPDEComponent." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/HeatTransferPDEComponent.html.
APA
Wolfram Language. (2020). HeatTransferPDEComponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeatTransferPDEComponent.html
Wolfram Language. (2020). HeatTransferPDEComponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeatTransferPDEComponent.html
BibTeX
@misc{reference.wolfram_2025_heattransferpdecomponent, author="Wolfram Research", title="{HeatTransferPDEComponent}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/HeatTransferPDEComponent.html}", note=[Accessed: 23-May-2025
]}
BibLaTeX
@online{reference.wolfram_2025_heattransferpdecomponent, organization={Wolfram Research}, title={HeatTransferPDEComponent}, year={2022}, url={https://reference.wolfram.com/language/ref/HeatTransferPDEComponent.html}, note=[Accessed: 23-May-2025
]}