HelmholtzPDEComponent
HelmholtzPDEComponent[vars,pars]
yields a Helmholtz PDE term with model variables vars and model parameters pars.
Details
- HelmholtzPDEComponent returns a sum of differential operators to be used as a part of partial differential equations:
- HelmholtzPDEComponent can be used to model Helmholtz equations with dependent variable , independent variables and time variable .
- Stationary model variables vars are vars={u[x1,…,xn],{x1,…,xn}}.
- Time-dependent model variables vars are vars={u[t,x1,…,xn],t,{x1,…,xn}}.
- The HelmholtzPDEComponent is based on a diffusion and reaction term:
- The Helmholtz PDE term is realized as a DiffusionPDETerm with –1 as diffusion coefficient and a ReactionPDETerm with coefficient , resulting in .
- The following model parameters pars can be given:
-
parameter default symbol "HelmholtzEigenvalue" 1 "RegionSymmetry" None - The reaction term coefficient is a scalar.
- The reaction term coefficient can depend on time, space, parameters and the dependent variables.
- If the HelmholtzPDEComponent depends on parameters that are specified in the association pars as …,keypi…,pivi,…], the parameters are replaced with .
- A possible choice for the parameter "RegionSymmetry" is "Axisymmetric".
- "Axisymmetric" region symmetry represents a truncated cylindrical coordinate system where the cylindrical coordinates are reduced by removing the angle variable as follows:
-
dimension reduction equation 1D 2D - The diffusion coefficient 1 affects the meaning of NeumannValue.
- If the HelmholtzPDEComponent depends on parameters that are specified in the association pars as …,keypi…,pivi,…, the parameters are replaced with .
Examples
open allclose allBasic Examples (4)
Wolfram Research (2020), HelmholtzPDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/HelmholtzPDEComponent.html (updated 2022).
Text
Wolfram Research (2020), HelmholtzPDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/HelmholtzPDEComponent.html (updated 2022).
CMS
Wolfram Language. 2020. "HelmholtzPDEComponent." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/HelmholtzPDEComponent.html.
APA
Wolfram Language. (2020). HelmholtzPDEComponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HelmholtzPDEComponent.html