HeunTPrime
✖
HeunTPrime
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- HeunTPrime belongs to the Heun class of functions.
- For certain special arguments, HeunTPrime automatically evaluates to exact values.
- HeunTPrime can be evaluated for arbitrary complex parameters.
- HeunTPrime can be evaluated to arbitrary numerical precision.
- HeunTPrime automatically threads over lists.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases

https://wolfram.com/xid/0ywpcl7nzfzo-3kfjq

Plot HeunTPrime:

https://wolfram.com/xid/0ywpcl7nzfzo-ftt82q

Series expansion of HeunTPrime:

https://wolfram.com/xid/0ywpcl7nzfzo-z8evs7

Scope (22)Survey of the scope of standard use cases
Numerical Evaluation (8)

https://wolfram.com/xid/0ywpcl7nzfzo-uqurky

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0ywpcl7nzfzo-lw9h0n

HeunTPrime can take one or more complex number parameters:

https://wolfram.com/xid/0ywpcl7nzfzo-64g5bd


https://wolfram.com/xid/0ywpcl7nzfzo-ft5oo1

HeunTPrime can take complex number arguments:

https://wolfram.com/xid/0ywpcl7nzfzo-hunut5

Finally, HeunTPrime can take all complex number input:

https://wolfram.com/xid/0ywpcl7nzfzo-56m4mo

Evaluate HeunTPrime efficiently at high precision:

https://wolfram.com/xid/0ywpcl7nzfzo-2c7v5i


https://wolfram.com/xid/0ywpcl7nzfzo-yaawua


https://wolfram.com/xid/0ywpcl7nzfzo-22a9kq


https://wolfram.com/xid/0ywpcl7nzfzo-1knfqv


https://wolfram.com/xid/0ywpcl7nzfzo-7yjugj

Compute the elementwise values of an array:

https://wolfram.com/xid/0ywpcl7nzfzo-thgd2

Or compute the matrix HeunTPrime function using MatrixFunction:

https://wolfram.com/xid/0ywpcl7nzfzo-o5jpo

Specific Values (1)
Visualization (5)
Plot the HeunTPrime function:

https://wolfram.com/xid/0ywpcl7nzfzo-n742f

Plot the absolute value of the HeunTPrime function for complex parameters:

https://wolfram.com/xid/0ywpcl7nzfzo-35sv9o

Plot HeunTPrime as a function of its second parameter :

https://wolfram.com/xid/0ywpcl7nzfzo-vhxvag

Plot HeunTPrime as a function of and
:

https://wolfram.com/xid/0ywpcl7nzfzo-mzgatp

https://wolfram.com/xid/0ywpcl7nzfzo-8282mz

Plot the family of HeunTPrime functions for different values of the accessory parameter :

https://wolfram.com/xid/0ywpcl7nzfzo-5yyyeh

https://wolfram.com/xid/0ywpcl7nzfzo-dnzkk3

Differentiation (1)
The derivatives of HeunTPrime are calculated using the HeunT function:

https://wolfram.com/xid/0ywpcl7nzfzo-6eb2k6

Integration (3)
Integral of HeunTPrime gives back HeunT:

https://wolfram.com/xid/0ywpcl7nzfzo-ecaem6

Definite numerical integral of HeunTPrime:

https://wolfram.com/xid/0ywpcl7nzfzo-3rkya0

More integrals with HeunTPrime:

https://wolfram.com/xid/0ywpcl7nzfzo-gjk5w4


https://wolfram.com/xid/0ywpcl7nzfzo-q3siwd

Series Expansions (4)
Taylor expansion for HeunTPrime at origin:

https://wolfram.com/xid/0ywpcl7nzfzo-cq23zb

Coefficient of the second term in the series expansion of HeunTPrime at :

https://wolfram.com/xid/0ywpcl7nzfzo-9rxgh1

Plots of the first three approximations for HeunTPrime around :

https://wolfram.com/xid/0ywpcl7nzfzo-l68lro

https://wolfram.com/xid/0ywpcl7nzfzo-j185j3

https://wolfram.com/xid/0ywpcl7nzfzo-hrtnwe

Series expansion for HeunTPrime at any ordinary complex point:

https://wolfram.com/xid/0ywpcl7nzfzo-ukhgue

Applications (1)Sample problems that can be solved with this function
Use the HeunTPrime function to calculate the derivatives of HeunT:

https://wolfram.com/xid/0ywpcl7nzfzo-8yj5vx

Properties & Relations (4)Properties of the function, and connections to other functions
HeunTPrime is analytic at the origin:

https://wolfram.com/xid/0ywpcl7nzfzo-usyc66

HeunTPrime can be calculated at any finite complex :

https://wolfram.com/xid/0ywpcl7nzfzo-txs34a

HeunTPrime is the derivative of HeunT:

https://wolfram.com/xid/0ywpcl7nzfzo-rvrd6q

Use FunctionExpand to expand HeunTPrime into simpler functions:

https://wolfram.com/xid/0ywpcl7nzfzo-h1b7ei


https://wolfram.com/xid/0ywpcl7nzfzo-ftheqb

Possible Issues (1)Common pitfalls and unexpected behavior
HeunTPrime calculations might take time for big arguments:

https://wolfram.com/xid/0ywpcl7nzfzo-6fjqjs

Neat Examples (1)Surprising or curious use cases
The Schrödinger equation for the following infinite potential well can be solved in terms of HeunTPrime:

https://wolfram.com/xid/0ywpcl7nzfzo-jjn6ko

https://wolfram.com/xid/0ywpcl7nzfzo-rwdp9i

Construct the general solution of the Schrödinger equation:

https://wolfram.com/xid/0ywpcl7nzfzo-kqhlks

https://wolfram.com/xid/0ywpcl7nzfzo-piwc6c
Verify this solution by direct substitution:

https://wolfram.com/xid/0ywpcl7nzfzo-c7bzyd

Wolfram Research (2020), HeunTPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunTPrime.html.
Text
Wolfram Research (2020), HeunTPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunTPrime.html.
Wolfram Research (2020), HeunTPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunTPrime.html.
CMS
Wolfram Language. 2020. "HeunTPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HeunTPrime.html.
Wolfram Language. 2020. "HeunTPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HeunTPrime.html.
APA
Wolfram Language. (2020). HeunTPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeunTPrime.html
Wolfram Language. (2020). HeunTPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeunTPrime.html
BibTeX
@misc{reference.wolfram_2025_heuntprime, author="Wolfram Research", title="{HeunTPrime}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/HeunTPrime.html}", note=[Accessed: 12-July-2025
]}
BibLaTeX
@online{reference.wolfram_2025_heuntprime, organization={Wolfram Research}, title={HeunTPrime}, year={2020}, url={https://reference.wolfram.com/language/ref/HeunTPrime.html}, note=[Accessed: 12-July-2025
]}