WOLFRAM

HeunTPrime[q,α,γ,δ,ϵ,z]

gives the -derivative of the HeunT function.

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • HeunTPrime belongs to the Heun class of functions.
  • For certain special arguments, HeunTPrime automatically evaluates to exact values.
  • HeunTPrime can be evaluated for arbitrary complex parameters.
  • HeunTPrime can be evaluated to arbitrary numerical precision.
  • HeunTPrime automatically threads over lists.

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Evaluate numerically:

Out[1]=1

Plot HeunTPrime:

Out[1]=1

Series expansion of HeunTPrime:

Out[1]=1

Scope  (22)Survey of the scope of standard use cases

Numerical Evaluation  (8)

Evaluate to high precision:

Out[1]=1

The precision of the output tracks the precision of the input:

Out[1]=1

HeunTPrime can take one or more complex number parameters:

Out[1]=1
Out[2]=2

HeunTPrime can take complex number arguments:

Out[1]=1

Finally, HeunTPrime can take all complex number input:

Out[1]=1

Evaluate HeunTPrime efficiently at high precision:

Out[1]=1
Out[2]=2

Lists and matrices:

Out[1]=1
Out[2]=2
Out[3]=3

Compute the elementwise values of an array:

Out[1]=1

Or compute the matrix HeunTPrime function using MatrixFunction:

Out[2]=2

Specific Values  (1)

Value of HeunTPrime at origin:

Out[1]=1

Visualization  (5)

Plot the HeunTPrime function:

Out[1]=1

Plot the absolute value of the HeunTPrime function for complex parameters:

Out[1]=1

Plot HeunTPrime as a function of its second parameter :

Out[1]=1

Plot HeunTPrime as a function of and :

Out[2]=2

Plot the family of HeunTPrime functions for different values of the accessory parameter :

Out[2]=2

Differentiation  (1)

The derivatives of HeunTPrime are calculated using the HeunT function:

Out[1]=1

Integration  (3)

Integral of HeunTPrime gives back HeunT:

Out[1]=1

Definite numerical integral of HeunTPrime:

Out[1]=1

More integrals with HeunTPrime:

Out[1]=1
Out[2]=2

Series Expansions  (4)

Taylor expansion for HeunTPrime at origin:

Out[1]=1

Coefficient of the second term in the series expansion of HeunTPrime at :

Out[1]=1

Plots of the first three approximations for HeunTPrime around :

Out[3]=3

Series expansion for HeunTPrime at any ordinary complex point:

Out[1]=1

Applications  (1)Sample problems that can be solved with this function

Use the HeunTPrime function to calculate the derivatives of HeunT:

Out[1]=1

Properties & Relations  (4)Properties of the function, and connections to other functions

HeunTPrime is analytic at the origin:

Out[1]=1

HeunTPrime can be calculated at any finite complex :

Out[1]=1

HeunTPrime is the derivative of HeunT:

Out[1]=1

Use FunctionExpand to expand HeunTPrime into simpler functions:

Out[1]=1
Out[2]=2

Possible Issues  (1)Common pitfalls and unexpected behavior

HeunTPrime calculations might take time for big arguments:

Out[3]=3

Neat Examples  (1)Surprising or curious use cases

The Schrödinger equation for the following infinite potential well can be solved in terms of HeunTPrime:

Plot the potential:

Out[2]=2

Construct the general solution of the Schrödinger equation:

Verify this solution by direct substitution:

Out[7]=7
Wolfram Research (2020), HeunTPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunTPrime.html.
Wolfram Research (2020), HeunTPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunTPrime.html.

Text

Wolfram Research (2020), HeunTPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunTPrime.html.

Wolfram Research (2020), HeunTPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunTPrime.html.

CMS

Wolfram Language. 2020. "HeunTPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HeunTPrime.html.

Wolfram Language. 2020. "HeunTPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HeunTPrime.html.

APA

Wolfram Language. (2020). HeunTPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeunTPrime.html

Wolfram Language. (2020). HeunTPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeunTPrime.html

BibTeX

@misc{reference.wolfram_2025_heuntprime, author="Wolfram Research", title="{HeunTPrime}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/HeunTPrime.html}", note=[Accessed: 12-July-2025 ]}

@misc{reference.wolfram_2025_heuntprime, author="Wolfram Research", title="{HeunTPrime}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/HeunTPrime.html}", note=[Accessed: 12-July-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_heuntprime, organization={Wolfram Research}, title={HeunTPrime}, year={2020}, url={https://reference.wolfram.com/language/ref/HeunTPrime.html}, note=[Accessed: 12-July-2025 ]}

@online{reference.wolfram_2025_heuntprime, organization={Wolfram Research}, title={HeunTPrime}, year={2020}, url={https://reference.wolfram.com/language/ref/HeunTPrime.html}, note=[Accessed: 12-July-2025 ]}