InfiniteLineThrough

InfiniteLineThrough[{p1,p2,}]

给出穿过点 pi 的无限长直线.

更多信息

范例

打开所有单元关闭所有单元

基本范例  (2)

穿过三个点的无限长直线:

显示该直线:

从无限长直线 到一个点的 RegionDistance

范围  (2)

InfiniteLineThrough 适用于坐标:

多个点:

一组点:

InfiniteLineThrough 适用于一维空间中的点:

2D:

D:

应用  (3)

基本应用  (3)

可视化穿过三个点的直线:

求通过三个点的圆的隐式表示:

参数化表示:

求拟合一组点的最佳 InfiniteLine

RegionFit 求最佳拟合:

比较结果:

属性和关系  (2)

InfiniteLineThrough 返回一个 InfiniteLine 对象:

RegionFit 获取拟合一组点的最佳 InfiniteLine

Wolfram Research (2022),InfiniteLineThrough,Wolfram 语言函数,https://reference.wolfram.com/language/ref/InfiniteLineThrough.html.

文本

Wolfram Research (2022),InfiniteLineThrough,Wolfram 语言函数,https://reference.wolfram.com/language/ref/InfiniteLineThrough.html.

CMS

Wolfram 语言. 2022. "InfiniteLineThrough." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/InfiniteLineThrough.html.

APA

Wolfram 语言. (2022). InfiniteLineThrough. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/InfiniteLineThrough.html 年

BibTeX

@misc{reference.wolfram_2024_infinitelinethrough, author="Wolfram Research", title="{InfiniteLineThrough}", year="2022", howpublished="\url{https://reference.wolfram.com/language/ref/InfiniteLineThrough.html}", note=[Accessed: 22-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_infinitelinethrough, organization={Wolfram Research}, title={InfiniteLineThrough}, year={2022}, url={https://reference.wolfram.com/language/ref/InfiniteLineThrough.html}, note=[Accessed: 22-November-2024 ]}