# IntervalMemberQ

IntervalMemberQ[interval,x]

gives True if the number x lies within the specified interval, and False otherwise.

IntervalMemberQ[interval1,interval2]

gives True if interval2 is completely contained within interval1.

IntervalMemberQ[interval]

represents an operator form of IntervalMemberQ that can be applied to a number.

# Examples

open allclose all

## Basic Examples(2)

Test whether lies in the interval 2 through 5:

Test whether lies in a center-radius interval:

## Scope(3)

IntervalMemberQ tests whether one interval lies within another:

Exact numbers do not define an extended interval:

Approximate numbers do:

Use IntervalMemberQ as an operator form:

Wolfram Research (1996), IntervalMemberQ, Wolfram Language function, https://reference.wolfram.com/language/ref/IntervalMemberQ.html (updated 2021).

#### Text

Wolfram Research (1996), IntervalMemberQ, Wolfram Language function, https://reference.wolfram.com/language/ref/IntervalMemberQ.html (updated 2021).

#### CMS

Wolfram Language. 1996. "IntervalMemberQ." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/IntervalMemberQ.html.

#### APA

Wolfram Language. (1996). IntervalMemberQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/IntervalMemberQ.html

#### BibTeX

@misc{reference.wolfram_2024_intervalmemberq, author="Wolfram Research", title="{IntervalMemberQ}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/IntervalMemberQ.html}", note=[Accessed: 09-September-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_intervalmemberq, organization={Wolfram Research}, title={IntervalMemberQ}, year={2021}, url={https://reference.wolfram.com/language/ref/IntervalMemberQ.html}, note=[Accessed: 09-September-2024 ]}