IntervalUnion

IntervalUnion[interval1,interval2,]

gives an interval containing the set of all points in any of the intervali.

Details

  • The interval can be any of:
  • CenteredInterval[]interval given by center and radius
    Interval[]interval given by end points
  • If all the intervali are CenteredInterval[], or at least one of the intervali is a nonreal interval, then the result will be a CenteredInterval[] that contains all of the points in the intervali. Otherwise, the result will be the Interval[] representing the set of all points in the intervali.

Examples

open allclose all

Basic Examples  (2)

Combine intervals:

Combine center-radius intervals:

Scope  (4)

Combine disjoint intervals:

Combine disjoint real center-radius intervals:

Combine real intervals of different types:

Combine intervals of different types, with at least one of them nonreal:

Wolfram Research (1996), IntervalUnion, Wolfram Language function, https://reference.wolfram.com/language/ref/IntervalUnion.html (updated 2021).

Text

Wolfram Research (1996), IntervalUnion, Wolfram Language function, https://reference.wolfram.com/language/ref/IntervalUnion.html (updated 2021).

CMS

Wolfram Language. 1996. "IntervalUnion." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/IntervalUnion.html.

APA

Wolfram Language. (1996). IntervalUnion. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/IntervalUnion.html

BibTeX

@misc{reference.wolfram_2024_intervalunion, author="Wolfram Research", title="{IntervalUnion}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/IntervalUnion.html}", note=[Accessed: 21-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_intervalunion, organization={Wolfram Research}, title={IntervalUnion}, year={2021}, url={https://reference.wolfram.com/language/ref/IntervalUnion.html}, note=[Accessed: 21-January-2025 ]}